The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Some questions of Arhangel'skii on rotoids

Harold BennettDennis BurkeDavid Lutzer — 2012

Fundamenta Mathematicae

A rotoid is a space X with a special point e ∈ X and a homeomorphism F: X² → X² having F(x,x) = (x,e) and F(e,x) = (e,x) for every x ∈ X. If any point of X can be used as the point e, then X is called a strong rotoid. We study some general properties of rotoids and prove that the Sorgenfrey line is a strong rotoid, thereby answering several questions posed by A. V. Arhangel'skii, and we pose further questions.

Diagonals and discrete subsets of squares

Dennis BurkeVladimir Vladimirovich Tkachuk — 2013

Commentationes Mathematicae Universitatis Carolinae

In 2008 Juhász and Szentmiklóssy established that for every compact space X there exists a discrete D X × X with | D | = d ( X ) . We generalize this result in two directions: the first one is to prove that the same holds for any Lindelöf Σ -space X and hence X ω is d -separable. We give an example of a countably compact space X such that X ω is not d -separable. On the other hand, we show that for any Lindelöf p -space X there exists a discrete subset D X × X such that Δ = { ( x , x ) : x X } D ¯ ; in particular, the diagonal Δ is a retract of D ¯ and the projection...

Weak-bases and D -spaces

Dennis K. Burke — 2007

Commentationes Mathematicae Universitatis Carolinae

It is shown that certain weak-base structures on a topological space give a D -space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are D -spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Hence, quotient mappings, with compact fibers, from metric spaces have a D -space image. What about quotient s -mappings? Arhangel’skii and Buzyakova have shown that spaces with a point-countable base are D -spaces...

Page 1

Download Results (CSV)