Weak-bases and D -spaces

Dennis K. Burke

Commentationes Mathematicae Universitatis Carolinae (2007)

  • Volume: 48, Issue: 2, page 281-289
  • ISSN: 0010-2628

Abstract

top
It is shown that certain weak-base structures on a topological space give a D -space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are D -spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Theorem.Any symmetrizable space X is a D -space ( hereditarily ) . Hence, quotient mappings, with compact fibers, from metric spaces have a D -space image. What about quotient s -mappings? Arhangel’skii and Buzyakova have shown that spaces with a point-countable base are D -spaces so open s -images of metric spaces are already known to be D -spaces. A collection 𝒲 of subsets of a sequential space X is said to be a w -system for the topology if whenever x U X , with U open, there exists a subcollection 𝒱 𝒲 such that x 𝒱 , 𝒱 is a weak-neighborhood of x , and 𝒱 U . Theorem.A sequential space X with a point-countable w -system is a D -space.Corollary.A space X with a point-countable weak-base is a D -space.Corollary.Any T 2 quotient s -image of a metric space is a D -space.

How to cite

top

Burke, Dennis K.. "Weak-bases and $D$-spaces." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 281-289. <http://eudml.org/doc/250236>.

@article{Burke2007,
abstract = {It is shown that certain weak-base structures on a topological space give a $D$-space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are $D$-spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Theorem.Any symmetrizable space $X$ is a $D$-space $($hereditarily$)$. Hence, quotient mappings, with compact fibers, from metric spaces have a $D$-space image. What about quotient $s$-mappings? Arhangel’skii and Buzyakova have shown that spaces with a point-countable base are $D$-spaces so open $s$-images of metric spaces are already known to be $D$-spaces. A collection $\mathcal \{W\}$ of subsets of a sequential space $X$ is said to be a $w$-system for the topology if whenever $x\in U\subseteq X$, with $U$ open, there exists a subcollection $\mathcal \{V\}\subseteq \mathcal \{W\}$ such that $x\in \bigcap \mathcal \{V\}$, $\bigcup \mathcal \{V\}$ is a weak-neighborhood of $x$, and $\bigcup \mathcal \{V\}\subseteq U$. Theorem.A sequential space $X$ with a point-countable $w$-system is a $D$-space.Corollary.A space $X$ with a point-countable weak-base is a $D$-space.Corollary.Any $T_2$ quotient $s$-image of a metric space is a $D$-space.},
author = {Burke, Dennis K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quotient map; symmetrizable space; weak-base; $w$-structure; $D$-space; quotient map; symmetrizable space; weak-base; -structure; -space},
language = {eng},
number = {2},
pages = {281-289},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weak-bases and $D$-spaces},
url = {http://eudml.org/doc/250236},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Burke, Dennis K.
TI - Weak-bases and $D$-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 2
SP - 281
EP - 289
AB - It is shown that certain weak-base structures on a topological space give a $D$-space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are $D$-spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Theorem.Any symmetrizable space $X$ is a $D$-space $($hereditarily$)$. Hence, quotient mappings, with compact fibers, from metric spaces have a $D$-space image. What about quotient $s$-mappings? Arhangel’skii and Buzyakova have shown that spaces with a point-countable base are $D$-spaces so open $s$-images of metric spaces are already known to be $D$-spaces. A collection $\mathcal {W}$ of subsets of a sequential space $X$ is said to be a $w$-system for the topology if whenever $x\in U\subseteq X$, with $U$ open, there exists a subcollection $\mathcal {V}\subseteq \mathcal {W}$ such that $x\in \bigcap \mathcal {V}$, $\bigcup \mathcal {V}$ is a weak-neighborhood of $x$, and $\bigcup \mathcal {V}\subseteq U$. Theorem.A sequential space $X$ with a point-countable $w$-system is a $D$-space.Corollary.A space $X$ with a point-countable weak-base is a $D$-space.Corollary.Any $T_2$ quotient $s$-image of a metric space is a $D$-space.
LA - eng
KW - quotient map; symmetrizable space; weak-base; $w$-structure; $D$-space; quotient map; symmetrizable space; weak-base; -structure; -space
UR - http://eudml.org/doc/250236
ER -

References

top
  1. Arhangel'skii A.V., Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162. (1966) MR0227950
  2. Arhangel'skii A.V., D -spaces and finite unions, Proc. Amer. Math. Soc. 132 (2004), 2163-2170. (2004) Zbl1045.54009MR2053991
  3. Arhangel'skii A.V., D -spaces and covering properties, Topology Appl. 146/147 (2005), 437-449. (2005) Zbl1063.54013MR2107163
  4. Arhangel'skii A.V., Buzyakova R., Addition theorems and D -spaces, Comment. Math. Univ. Carolin. 43 (2002), 653-663. (2002) Zbl1090.54017MR2045787
  5. Borges C.R., Wehrly A.C., A study of D -spaces, Topology Proc. 16 (1991), 7-15. (1991) Zbl0787.54023MR1206448
  6. Buzyakova R., On D -property of strong Σ -spaces, Comment. Math. Univ. Carolin. 43.3 (2002), 493-495. (2002) Zbl1090.54018MR1920524
  7. Buzyakova R., Hereditary D -property of function spaces over compacta, Proc. Amer. Math. Soc. 132 (2004), 3433-3439. (2004) Zbl1064.54029MR2073321
  8. van Douwen E.K., Pfeffer W., Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), 371-377. (1979) Zbl0409.54011MR0547605
  9. Džamonja M., On D -spaces and discrete families of sets, in: Set theory, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 58, Amer. Math. Soc., Providence, RI, 2002, pp.45-63. MR1903849
  10. Fleissner W., Stanley A., D -spaces, Topology Appl. 114 (2001), 261-271. (2001) Zbl0983.54024MR1838325
  11. Gruenhage G., A note on D -spaces, Topology Appl. 153 (2005-2006), 2218-2228. (2005-2006) Zbl1101.54029MR2238726

NotesEmbed ?

top

You must be logged in to post comments.