Weak-bases and -spaces
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 2, page 281-289
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBurke, Dennis K.. "Weak-bases and $D$-spaces." Commentationes Mathematicae Universitatis Carolinae 48.2 (2007): 281-289. <http://eudml.org/doc/250236>.
@article{Burke2007,
abstract = {It is shown that certain weak-base structures on a topological space give a $D$-space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are $D$-spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Theorem.Any symmetrizable space $X$ is a $D$-space $($hereditarily$)$. Hence, quotient mappings, with compact fibers, from metric spaces have a $D$-space image. What about quotient $s$-mappings? Arhangel’skii and Buzyakova have shown that spaces with a point-countable base are $D$-spaces so open $s$-images of metric spaces are already known to be $D$-spaces. A collection $\mathcal \{W\}$ of subsets of a sequential space $X$ is said to be a $w$-system for the topology if whenever $x\in U\subseteq X$, with $U$ open, there exists a subcollection $\mathcal \{V\}\subseteq \mathcal \{W\}$ such that $x\in \bigcap \mathcal \{V\}$, $\bigcup \mathcal \{V\}$ is a weak-neighborhood of $x$, and $\bigcup \mathcal \{V\}\subseteq U$. Theorem.A sequential space $X$ with a point-countable $w$-system is a $D$-space.Corollary.A space $X$ with a point-countable weak-base is a $D$-space.Corollary.Any $T_2$ quotient $s$-image of a metric space is a $D$-space.},
author = {Burke, Dennis K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quotient map; symmetrizable space; weak-base; $w$-structure; $D$-space; quotient map; symmetrizable space; weak-base; -structure; -space},
language = {eng},
number = {2},
pages = {281-289},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weak-bases and $D$-spaces},
url = {http://eudml.org/doc/250236},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Burke, Dennis K.
TI - Weak-bases and $D$-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2007
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 48
IS - 2
SP - 281
EP - 289
AB - It is shown that certain weak-base structures on a topological space give a $D$-space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are $D$-spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Theorem.Any symmetrizable space $X$ is a $D$-space $($hereditarily$)$. Hence, quotient mappings, with compact fibers, from metric spaces have a $D$-space image. What about quotient $s$-mappings? Arhangel’skii and Buzyakova have shown that spaces with a point-countable base are $D$-spaces so open $s$-images of metric spaces are already known to be $D$-spaces. A collection $\mathcal {W}$ of subsets of a sequential space $X$ is said to be a $w$-system for the topology if whenever $x\in U\subseteq X$, with $U$ open, there exists a subcollection $\mathcal {V}\subseteq \mathcal {W}$ such that $x\in \bigcap \mathcal {V}$, $\bigcup \mathcal {V}$ is a weak-neighborhood of $x$, and $\bigcup \mathcal {V}\subseteq U$. Theorem.A sequential space $X$ with a point-countable $w$-system is a $D$-space.Corollary.A space $X$ with a point-countable weak-base is a $D$-space.Corollary.Any $T_2$ quotient $s$-image of a metric space is a $D$-space.
LA - eng
KW - quotient map; symmetrizable space; weak-base; $w$-structure; $D$-space; quotient map; symmetrizable space; weak-base; -structure; -space
UR - http://eudml.org/doc/250236
ER -
References
top- Arhangel'skii A.V., Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162. (1966) MR0227950
- Arhangel'skii A.V., -spaces and finite unions, Proc. Amer. Math. Soc. 132 (2004), 2163-2170. (2004) Zbl1045.54009MR2053991
- Arhangel'skii A.V., -spaces and covering properties, Topology Appl. 146/147 (2005), 437-449. (2005) Zbl1063.54013MR2107163
- Arhangel'skii A.V., Buzyakova R., Addition theorems and -spaces, Comment. Math. Univ. Carolin. 43 (2002), 653-663. (2002) Zbl1090.54017MR2045787
- Borges C.R., Wehrly A.C., A study of -spaces, Topology Proc. 16 (1991), 7-15. (1991) Zbl0787.54023MR1206448
- Buzyakova R., On -property of strong -spaces, Comment. Math. Univ. Carolin. 43.3 (2002), 493-495. (2002) Zbl1090.54018MR1920524
- Buzyakova R., Hereditary -property of function spaces over compacta, Proc. Amer. Math. Soc. 132 (2004), 3433-3439. (2004) Zbl1064.54029MR2073321
- van Douwen E.K., Pfeffer W., Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), 371-377. (1979) Zbl0409.54011MR0547605
- Džamonja M., On -spaces and discrete families of sets, in: Set theory, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 58, Amer. Math. Soc., Providence, RI, 2002, pp.45-63. MR1903849
- Fleissner W., Stanley A., -spaces, Topology Appl. 114 (2001), 261-271. (2001) Zbl0983.54024MR1838325
- Gruenhage G., A note on -spaces, Topology Appl. 153 (2005-2006), 2218-2228. (2005-2006) Zbl1101.54029MR2238726
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.