Random networks with sublinear preferential attachment: degree evolutions.
We consider the one-sided exit problem – also called one-sided barrier problem – for (-fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function such that the probability that any -fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time behaves as for large . We also investigate when the fixed level can be replaced by a different barrier...
In this article, we study the approximation of a probability measure on by its empirical measure interpreted as a random quantization. As error criterion we consider an averaged th moment Wasserstein metric. In the case where , we establish fine upper and lower bounds for the error, a. Moreover, we provide a universal estimate based on moments, a . In particular, we show that quantization by empirical measures is of optimal order under weak assumptions.
Page 1