Commutators and generators II.
Let Ω be an open subset of with 0 ∈ Ω. Furthermore, let be a second-order partial differential operator with domain where the coefficients are real, and the coefficient matrix satisfies bounds 0 < C(x) ≤ c(|x|)I for all x ∈ Ω. If for some λ > 0 where then we establish that is L₁-unique, i.e. it has a unique L₁-extension which generates a continuous semigroup, if and only if it is Markov unique, i.e. it has a unique L₂-extension which generates a submarkovian semigroup. Moreover...
Page 1