The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A cut-vertex in a graph G is a vertex whose removal increases the number of connected components of G. An end-block of G is a block with a single cut-vertex. In this paper we establish upper bounds on the numbers of end-blocks and cut-vertices in a 4-regular graph G and claw-free 4-regular graphs. We characterize the extremal graphs achieving these bounds.
Let and be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through and (equivalently, any bicrossed product between the Hopf algebras and ) must be isomorphic to one of the following four Hopf algebras: . The set of all matched pairs is explicitly described, and then the associated bicrossed product is given by generators and relations.
Let be a group generated by a set of finite order elements. We prove that any bicrossed product between the generalized Taft algebra and group algebra is actually the smash product . Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of . As an application, the classification of is completely presented by generators and relations, where denotes the -cyclic group.
In this paper, we study the type Hopf algebras and present its braided and quasitriangular Hopf algebra structure. This generalizes well-known results on and type Hopf algebras. Finally, the classification of type Hopf algebras is given.
Download Results (CSV)