Common fixed point theorems for subcompatible single and set-valued -maps.
Let be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay , , where is the -derivative on and is the -derivative on . We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show...
We use a modification of Krasnoselskii’s fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9 (2002), 181–190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits...
In this paper we use the fixed point method to prove asymptotic stability results of the zero solution of a generalized linear neutral difference equation with variable delays. An asymptotic stability theorem with a sufficient condition is proved, which improves and generalizes some results due to Y. N. Raffoul (2006), E. Yankson (2009), M. Islam and E. Yankson (2005).
The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for , , , and to show that this sum of mappings fits into the framework of a modification of Krasnoselskii’s...
The objective of this work is the application of Krasnosel'skii's fixed point technique to prove the existence of periodic solutions of a system of coupled nonlinear integro-differential equations with variable delays. An example is given to illustrate this work.
Our paper deals with the following nonlinear neutral differential equation with variable delay By using Krasnoselskii’s fixed point theorem we obtain the existence of periodic solution and by contraction mapping principle we obtain the uniqueness. A sufficient condition is established for the positivity of the above equation. Stability results of this equation are analyzed. Our results extend and complement some results obtained in the work [Yuan, Y., Guo, Z.: On the existence and stability of...
The goal of the present paper is to establish some new results on the existence, uniqueness and stability of periodic solutions for a class of third order functional differential equations with state and time-varying delays. By Krasnoselskii's fixed point theorem, we prove the existence of periodic solutions and under certain sufficient conditions, the Banach contraction principle ensures the uniqueness of this solution. The results obtained in this paper are illustrated by an example.
In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay The stability of the zero solution of this eqution provided that . The Caratheodory condition is used for the functions and .
Page 1