Torsion Tensor and Critical Metrics on Contact (2n + 1)-Manifolds.
In questo lavoro si danno alcuni risultati sugli spettri degli operatori di Laplace per varietà Riemanniane compatte con curvatura scalare positiva e di dimensione . Ad essi si aggiunge una osservazione riguardante la congettura di Yamabe.
In questo lavoro si danno alcuni risultati sugli spettri degli operatori di Laplace per varietà Riemanniane compatte con curvatura scalare positiva e di dimensione . Ad essi si aggiunge una osservazione riguardante la congettura di Yamabe.
We produce new examples of harmonic maps, having as source manifold a space of constant curvature and as target manifold its tangent bundle , equipped with a suitable Riemannian -natural metric. In particular, we determine a family of Riemannian -natural metrics on , with respect to which all conformal gradient vector fields define harmonic maps from into .
This paper is motivated by the open problem whether a three-dimensional curvature homogeneous hypersurface of a real space form is locally homogeneous or not. We give some partial positive answers.
Page 1