Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On 2 p -dimensional Riemannian manifolds with positive scalar curvature

Domenico Perrone — 1984

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro si danno alcuni risultati sugli spettri degli operatori di Laplace per varietà Riemanniane compatte con curvatura scalare positiva e di dimensione 2 p . Ad essi si aggiunge una osservazione riguardante la congettura di Yamabe.

Some examples of harmonic maps for g -natural metrics

Mohamed Tahar Kadaoui AbbassiGiovanni CalvarusoDomenico Perrone — 2009

Annales mathématiques Blaise Pascal

We produce new examples of harmonic maps, having as source manifold a space ( M , g ) of constant curvature and as target manifold its tangent bundle T M , equipped with a suitable Riemannian g -natural metric. In particular, we determine a family of Riemannian g -natural metrics G on T 𝕊 2 , with respect to which all conformal gradient vector fields define harmonic maps from 𝕊 2 into ( T 𝕊 2 , G ) .

Page 1

Download Results (CSV)