The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Front d'onde et propagation des singularités pour un vecteur-distribution

Dominique Manchon — 1999

Colloquium Mathematicae

We define the wave front set of a distribution vector of a unitary representation in terms of pseudo-differential-like operators [M2] for any real Lie group G. This refines the notion of wave front set of a representation introduced by R. Howe [Hw]. We give as an application a necessary condition so that a distribution vector remains a distribution vector for the restriction of the representation to a closed subgroup H, and we give a propagation of singularities theorem for distribution vectors.

Cohomologie tangente et cup-produit pour la quantification de Kontsevich

Dominique ManchonCharles Torossian — 2003

Annales mathématiques Blaise Pascal

On a flat manifold M = d , M. Kontsevich’s formality quasi-isomorphism is compatible with cup-products on tangent cohomology spaces, in the sense that for any formal Poisson 2 -tensor γ the derivative at γ of the quasi-isomorphism induces an isomorphism of graded commutative algebras from Poisson cohomology space to Hochschild cohomology space relative to the deformed multiplication built from γ via the quasi-isomorphism. We give here a detailed proof of this result, with signs and orientations precised....

Page 1

Download Results (CSV)