From L. Euler to D. König
Starting from the famous Königsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by König are very close to Euler's discoveries.
Starting from the famous Königsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by König are very close to Euler's discoveries.
Les modèles classiques de coloration doivent leur notoriété en grande partie à leurs applications à des problèmes de type emploi du temps ; nous présentons les concepts de base des colorations ainsi qu’une série de variations et de généralisations motivées par divers problèmes d’ordonnancement dont les élaborations d’horaires scolaires. Quelques algorithmes exacts et heuristiques seront présentés et nous esquisserons des méthodes basées sur la recherche Tabou pour trouver des solutions approchées...
The classical colouring models are well known thanks in large part to their applications to scheduling type problems; we describe the basic concepts of colourings together with a number of variations and generalisations arising from scheduling problems such as the creation of school schedules. Some exact and heuristic algorithms will be presented, and we will sketch solution methods based on tabu search to find approximate solutions to large problems. Finally we will also mention the use...
Page 1