From L. Euler to D. König

Dominique de Werra

RAIRO - Operations Research (2009)

  • Volume: 43, Issue: 3, page 247-251
  • ISSN: 0399-0559

Abstract

top
Starting from the famous Königsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by König are very close to Euler's discoveries.

How to cite

top

de Werra, Dominique. "From L. Euler to D. König." RAIRO - Operations Research 43.3 (2009): 247-251. <http://eudml.org/doc/250674>.

@article{deWerra2009,
abstract = { Starting from the famous Königsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by König are very close to Euler's discoveries. },
author = {de Werra, Dominique},
journal = {RAIRO - Operations Research},
keywords = {Eulerian graph; edge coloring; parity; König theorem.; graph theory; edge colouring; König theorem},
language = {eng},
month = {7},
number = {3},
pages = {247-251},
publisher = {EDP Sciences},
title = {From L. Euler to D. König},
url = {http://eudml.org/doc/250674},
volume = {43},
year = {2009},
}

TY - JOUR
AU - de Werra, Dominique
TI - From L. Euler to D. König
JO - RAIRO - Operations Research
DA - 2009/7//
PB - EDP Sciences
VL - 43
IS - 3
SP - 247
EP - 251
AB - Starting from the famous Königsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by König are very close to Euler's discoveries.
LA - eng
KW - Eulerian graph; edge coloring; parity; König theorem.; graph theory; edge colouring; König theorem
UR - http://eudml.org/doc/250674
ER -

References

top
  1. C. Berge, Graphes. Gauthier-Villars, Paris (1983).  
  2. D. de Werra, Equitable colorations of graphs. Revue Française d'Informatique et de Recherche OpérationnelleR-3 (1971) 3–8.  Zbl0239.05112
  3. L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae Scientiarum Imperialis Petropolitanae8 (1736) 128–140. Reprinted in: Leonhardi Euleri – Opera Omnia – Series Prima – Opera Mathematica – Commentationes Algebraicae, L.G. du Pasquier Ed., Teubner, Leipzig (1923) 1–10.  
  4. H.N. Gabow, Using Euler partitions to edge color bipartite multigraphs. Int. J. Parallel Prog.5 (1976) 345–355.  Zbl0411.05039
  5. I. Gribkovskai, Ø. Halskan and G. Laporte, The bridges of Königsberg – a historical perspective. Networks49 (2007) 199–203.  
  6. C. Hierholzer, Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Math. Ann.6 (1873) 30–32.  
  7. D. König, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére (Hungarian). Mathematikai és Természettudományi Értesitö34 (1916) 104–119.  Zbl46.1451.03
  8. A. Schrijver, Bipartite edge coloring in 0 ( δ m ) time . SIAM J. Comput.28 (1998) 841–846.  Zbl0918.68071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.