From L. Euler to D. König
RAIRO - Operations Research (2009)
- Volume: 43, Issue: 3, page 247-251
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topde Werra, Dominique. "From L. Euler to D. König." RAIRO - Operations Research 43.3 (2009): 247-251. <http://eudml.org/doc/250674>.
@article{deWerra2009,
abstract = {
Starting from the famous Königsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by König are very close to Euler's discoveries.
},
author = {de Werra, Dominique},
journal = {RAIRO - Operations Research},
keywords = {Eulerian graph; edge coloring; parity; König theorem.; graph theory; edge colouring; König theorem},
language = {eng},
month = {7},
number = {3},
pages = {247-251},
publisher = {EDP Sciences},
title = {From L. Euler to D. König},
url = {http://eudml.org/doc/250674},
volume = {43},
year = {2009},
}
TY - JOUR
AU - de Werra, Dominique
TI - From L. Euler to D. König
JO - RAIRO - Operations Research
DA - 2009/7//
PB - EDP Sciences
VL - 43
IS - 3
SP - 247
EP - 251
AB -
Starting from the famous Königsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by König are very close to Euler's discoveries.
LA - eng
KW - Eulerian graph; edge coloring; parity; König theorem.; graph theory; edge colouring; König theorem
UR - http://eudml.org/doc/250674
ER -
References
top- C. Berge, Graphes. Gauthier-Villars, Paris (1983).
- D. de Werra, Equitable colorations of graphs. Revue Française d'Informatique et de Recherche OpérationnelleR-3 (1971) 3–8.
- L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae Scientiarum Imperialis Petropolitanae8 (1736) 128–140. Reprinted in: Leonhardi Euleri – Opera Omnia – Series Prima – Opera Mathematica – Commentationes Algebraicae, L.G. du Pasquier Ed., Teubner, Leipzig (1923) 1–10.
- H.N. Gabow, Using Euler partitions to edge color bipartite multigraphs. Int. J. Parallel Prog.5 (1976) 345–355.
- I. Gribkovskai, Ø. Halskan and G. Laporte, The bridges of Königsberg – a historical perspective. Networks49 (2007) 199–203.
- C. Hierholzer, Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Math. Ann.6 (1873) 30–32.
- D. König, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére (Hungarian). Mathematikai és Természettudományi Értesitö34 (1916) 104–119.
- A. Schrijver, Bipartite edge coloring in . SIAM J. Comput.28 (1998) 841–846.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.