The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be the unique noncommutative and noncocommutative eight dimensional semi-simple Hopf algebra. We first construct a weak Hopf algebra based on , then we investigate the structure of the representation ring of . Finally, we prove that the automorphism group of is just isomorphic to , where is the dihedral group with order 12.
Let be the Green ring of the weak Hopf algebra corresponding to Sweedler’s 4-dimensional Hopf algebra , and let be the automorphism group of the Green algebra . We show that the quotient group , where contains the identity map and is isomorphic to the infinite group and is the symmetric group of order 6.
Download Results (CSV)