The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Composition results for strongly summing and dominated multilinear operators

Dumitru Popa — 2014

Open Mathematics

In this paper we prove some composition results for strongly summing and dominated operators. As an application we give necessary and sufficient conditions for a multilinear tensor product of multilinear operators to be strongly summing or dominated. Moreover, we show the failure of some possible n-linear versions of Grothendieck’s composition theorem in the case n ≥ 2 and give a new example of a 1-dominated, hence strongly 1-summing bilinear operator which is not weakly compact.

Rank α operators on the space C(T,X)

Dumitru Popa — 2002

Colloquium Mathematicae

For 0 ≤ α < 1, an operator U ∈ L(X,Y) is called a rank α operator if x τ α x implies Uxₙ → Ux in norm. We give some results on rank α operators, including an interpolation result and a characterization of rank α operators U: C(T,X) → Y in terms of their representing measures.

2-summing multiplication operators

Dumitru Popa — 2013

Studia Mathematica

Let 1 ≤ p < ∞, = ( X ) n be a sequence of Banach spaces and l p ( ) the coresponding vector valued sequence space. Let = ( X ) n , = ( Y ) n be two sequences of Banach spaces, = ( V ) n , Vₙ: Xₙ → Yₙ, a sequence of bounded linear operators and 1 ≤ p,q < ∞. We define the multiplication operator M : l p ( ) l q ( ) by M ( ( x ) n ) : = ( V ( x ) ) n . We give necessary and sufficient conditions for M to be 2-summing when (p,q) is one of the couples (1,2), (2,1), (2,2), (1,1), (p,1), (p,2), (2,p), (1,p), (p,q); in the last case 1 < p < 2, 1 < q < ∞.

Multiple summing operators on l p spaces

Dumitru Popa — 2014

Studia Mathematica

We use the Maurey-Rosenthal factorization theorem to obtain a new characterization of multiple 2-summing operators on a product of l p spaces. This characterization is used to show that multiple s-summing operators on a product of l p spaces with values in a Hilbert space are characterized by the boundedness of a natural multilinear functional (1 ≤ s ≤ 2). We use these results to show that there exist many natural multiple s-summing operators T : l 4 / 3 × l 4 / 3 l such that none of the associated linear operators is s-summing...

Copies of l p n ’s uniformly in the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X )

Dumitru Popa — 2017

Czechoslovak Mathematical Journal

We study the presence of copies of l p n ’s uniformly in the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X ) . By using Dvoretzky’s theorem we deduce that if X is an infinite-dimensional Banach space, then Π 2 ( C [ 0 , 1 ] , X ) contains λ 2 -uniformly copies of l n ’s and Π 1 ( C [ 0 , 1 ] , X ) contains λ -uniformly copies of l 2 n ’s for all λ > 1 . As an application, we show that if X is an infinite-dimensional Banach space then the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X ) are distinct, extending the well-known result that the spaces Π 2 ( C [ 0 , 1 ] , X ) and 𝒩 ( C [ 0 , 1 ] , X ) are distinct.

Page 1

Download Results (CSV)