The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove the impossibility of imbeddings of Hartogs figures into general complex manifolds which are close to an imbedding of an analytic disc attached to a totally real collar. Analogously we provide examples of the so called thin Hartogs figures in complex manifolds having no neighborhood biholomorphic to an open set in a Stein manifold.
If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.
It is proved that any subharmonic function in a domain Ω ⊂ ℂⁿ which is plurisubharmonic outside of a real hypersurface of class C¹ is indeed plurisubharmonic in Ω.
Download Results (CSV)