Weakly confluent mappings and a classification of continua
CONTENTS1. Introduction.............................................................................52. Ordered scattered spaces......................................................6 2.1. Topological type..................................................................6 2.2. Ordered spaces..................................................................6 2.3. Rim-type.............................................................................9 2.4. Disk partitions.....................................................................93....
CONTENTSIntroduction......................................................................................51. General notion of aposyndesis....................................................62. Relation T for special families......................................................83. Properties of T.............................................................................94. T-aposyndesis in homogeneous continua..................................115. Colocal connectedness and T-aposyndesis...............................136....
CONTENTS1. Introduction......................................................................52. Rim-type and decompositions..........................................83. Defining sequences and isomorphisms..........................184. Embedding theorem.......................................................265. Construction of universal and containing spaces...........326. References....................................................................39
CONTENTS1. Introduction.................................................................................................................................................52. Partitioning Peano continua......................................................................................................................103. Peano continua and cross-connectedness...............................................................................................184. The characterization of the Menger curve.................................................................................................285....
We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate subcontinuum which does not separate X.
We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.
It is well-known that the set of buried points of a Julia set of a rational function (also called the residual Julia set) is topologically “fat” in the sense that it is a dense if it is non-empty. We show that it is, in many cases, a full-measure subset of the Julia set with respect to conformal measure and the measure of maximal entropy. We also address Hausdorff dimension of buried points in the same cases, and discuss connectivity and topological dimension of the set of buried points. Finally,...
We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map which is ε-close to f such that the inverse limit is hereditarily indecomposable.
Page 1