Currently displaying 1 – 16 of 16

Showing per page

Order by Relevance | Title | Year of publication

Containing spaces for planar rational compacta

CONTENTS1. Introduction.............................................................................52. Ordered scattered spaces......................................................6 2.1. Topological type..................................................................6 2.2. Ordered spaces..................................................................6 2.3. Rim-type.............................................................................9 2.4. Disk partitions.....................................................................93....

Continuous mappings on continua II

CONTENTSIntroduction......................................................................................51. General notion of aposyndesis....................................................62. Relation T for special families......................................................83. Properties of T.............................................................................94. T-aposyndesis in homogeneous continua..................................115. Colocal connectedness and T-aposyndesis...............................136....

Universal rational spaces

CONTENTS1. Introduction......................................................................52. Rim-type and decompositions..........................................83. Defining sequences and isomorphisms..........................184. Embedding theorem.......................................................265. Construction of universal and containing spaces...........326. References....................................................................39

The Menger curve Characterization and extension of homeomorphisms of non-locally-separating closed subsets

CONTENTS1. Introduction.................................................................................................................................................52. Partitioning Peano continua......................................................................................................................103. Peano continua and cross-connectedness...............................................................................................184. The characterization of the Menger curve.................................................................................................285....

On continuous extension of uniformly continuous functions and metrics

T. BanakhN. BrodskiyI. StasyukE. D. Tymchatyn — 2009

Colloquium Mathematicae

We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.

Topology and measure of buried points in Julia sets

Clinton P. CurryJohn C. MayerE. D. Tymchatyn — 2013

Fundamenta Mathematicae

It is well-known that the set of buried points of a Julia set of a rational function (also called the residual Julia set) is topologically “fat” in the sense that it is a dense G δ if it is non-empty. We show that it is, in many cases, a full-measure subset of the Julia set with respect to conformal measure and the measure of maximal entropy. We also address Hausdorff dimension of buried points in the same cases, and discuss connectivity and topological dimension of the set of buried points. Finally,...

Hereditarily indecomposable inverse limits of graphs

K. KawamuraH. M. TuncaliE. D. Tymchatyn — 2005

Fundamenta Mathematicae

We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map f ε : G G which is ε-close to f such that the inverse limit ( G , f ε ) is hereditarily indecomposable.

Page 1

Download Results (CSV)