Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Mixing properties of nearly maximal entropy measures for d shifts of finite type

E. RobinsonAyşe Şahin — 2000

Colloquium Mathematicae

We prove that for a certain class of d shifts of finite type with positive topological entropy there is always an invariant measure, with entropy arbitrarily close to the topological entropy, that has strong metric mixing properties. With the additional assumption that there are dense periodic orbits, one can ensure that this measure is Bernoulli.

Tilings associated with non-Pisot matrices

Maki FurukadoShunji ItoE. Arthur Robinson — 2006

Annales de l’institut Fourier

Suppose A G l d ( ) has a 2-dimensional expanding subspace E u , satisfies a regularity condition, called “good star”, and has A * 0 , where A * is an of A . A morphism θ of the free group on { 1 , 2 , , d } is called a of A if it has structure matrix A . We show that there is a Θ whose “boundary substitution” θ = Θ is a non-abelianization of A . Such a tiling substitution Θ leads to a self-affine tiling of E u 2 with A u : = A | E u G L 2 ( ) as its expansion. In the last section we find conditions on A so that A * has no negative entries.

Page 1

Download Results (CSV)