AbstractWe establish the sharpness of the embedding of certain Besov and Triebel-Lizorkin spaces in spaces of Lipschitz type. In particular, this proves the sharpness of the Brézis-Wainger result concerning the “almost” Lipschitz continuity of elements of the Sobolev space , where 1 < p < ∞. Upper and lower estimates are obtained for the entropy numbers of related embeddings of Besov spaces on bounded domains.
CONTENTSIntroduction...........................................................51....
CONTENTSIntroduction............................................................................................................ 51. Preliminaries............................................................................................................. 82. Embedding into into (n>1).......................................... 103. The case n = 1.......................................................................................................... 284. Embedding into ...............................................................
Download Results (CSV)