We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein...
We derive both local and global generalized Bianchi identities for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the a priori introduction of a connection. The proof is based on a global decomposition of the variational Lie derivative of the generalized Euler-Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that...
We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that...
Summary: We specialize in a new way the second Noether theorem for gauge-natural field theories by relating it to the Jacobi morphism and show that it plays a fundamental role in the derivation of canonical covariant conserved quantities. In particular we show that Bergmann-Bianchi identities for such theories hold true covariantly and canonically only along solutions of generalized gauge-natural Jacobi equations. Vice versa, all vertical parts of gauge-natural lifts of infinitesimal principal automorphisms...
Download Results (CSV)