The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 16 of 16

Showing per page

Order by Relevance | Title | Year of publication

Existence results for quasilinear degenerated equations via strong convergence of truncations.

Youssef AkdimElhoussine AzroulAbdelmoujib Benkirane — 2004

Revista Matemática Complutense

In this paper we study the existence of solutions for quasilinear degenerated elliptic operators A(u) + g(x,u,∇u) = f, where A is a Leray-Lions operator from W (Ω,ω) into its dual, while g(x,s,ξ) is a nonlinear term which has a growth condition with respect to ξ and no growth with respect to s, but it satisfies a sign condition on s. The right hand side f is assumed to belong either to W(Ω,ω*) or to L(Ω).

Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems

Youssef AkdimElhoussine AzroulAbdelmoujib Benkirane — 2003

Annales mathématiques Blaise Pascal

An existence theorem is proved, for a quasilinear degenerated elliptic inequality involving nonlinear operators of the form A u + g ( x , u , u ) , where A is a Leray-Lions operator from W 0 1 , p ( Ω , w ) into its dual, while g ( x , s , ξ ) is a nonlinear term which has a growth condition with respect to ξ and no growth with respect to s , but it satisfies a sign condition on s , the second term belongs to W - 1 , p ( Ω , w * ) .

Existence of solutions for some quasilinear p ( x ) -elliptic problem with Hardy potential

Elhoussine AzroulMohammed BouzianiHassane HjiajAhmed Youssfi — 2019

Mathematica Bohemica

We consider the anisotropic quasilinear elliptic Dirichlet problem - i = 1 N D i a i ( x , u , u ) + | u | s ( x ) - 1 u = f + λ | u | p 0 ( x ) - 2 u | x | p 0 ( x ) in Ω , u = 0 on Ω , where Ω is an open bounded subset of N containing the origin. We show the existence of entropy solution for this equation where the data f is assumed to be in L 1 ( Ω ) and λ is a positive constant.

Page 1

Download Results (CSV)