On Riesz homomorphisms in von Neumann regular f-algebra.
The main topic of the first section of this paper is the following theorem: let be an Archimedean -algebra with unit element , and a Riesz homomorphism such that for all . Then every Riesz homomorphism extension of from the Dedekind completion of into itself satisfies for all . In the second section this result is applied in several directions. As a first application it is applied to show a result about extensions of positive projections to the Dedekind completion. A second application...
It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator where and are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost -algebras.
Let be a Riesz space, a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123–134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial is linearly represented. This fits in the type of results by...
Page 1