Order bounded orthosymmetric bilinear operator

Elmiloud Chil

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 873-880
  • ISSN: 0011-4642

Abstract

top
It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator b : E × E F where E and F are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost f -algebras.

How to cite

top

Chil, Elmiloud. "Order bounded orthosymmetric bilinear operator." Czechoslovak Mathematical Journal 61.4 (2011): 873-880. <http://eudml.org/doc/196787>.

@article{Chil2011,
abstract = {It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator $b\colon E\times E\rightarrow F$ where $E$ and $F$ are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost $f$-algebras.},
author = {Chil, Elmiloud},
journal = {Czechoslovak Mathematical Journal},
keywords = {vector lattice; positive bilinear operator; orthosymmetric bilinear operator; lattice bimorphism; vector lattice; positive bilinear operator; orthosymmetric bilinear operator; lattice bimorphism},
language = {eng},
number = {4},
pages = {873-880},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Order bounded orthosymmetric bilinear operator},
url = {http://eudml.org/doc/196787},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Chil, Elmiloud
TI - Order bounded orthosymmetric bilinear operator
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 873
EP - 880
AB - It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator $b\colon E\times E\rightarrow F$ where $E$ and $F$ are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost $f$-algebras.
LA - eng
KW - vector lattice; positive bilinear operator; orthosymmetric bilinear operator; lattice bimorphism; vector lattice; positive bilinear operator; orthosymmetric bilinear operator; lattice bimorphism
UR - http://eudml.org/doc/196787
ER -

References

top
  1. Aliprantis, C. D., Burkinshaw, O., Positive Operators, Springer Berlin (2006). (2006) Zbl1098.47001MR2262133
  2. Basly, M., Triki, A., FF-algèbres Archimédiennes réticulées, University of Tunis, Preprint (1988). (1988) MR0964828
  3. Bernau, S. J., Huijsmans, C. B., 10.1017/S0305004100068560, Math. Proc. Camb. Philos. Soc. 107 (1990), 287-308. (1990) Zbl0707.06009MR1027782DOI10.1017/S0305004100068560
  4. Bigard, A., Keimel, K., Wolfenstein, S., Groupes et Anneaux Réticulés. Lecture Notes in Mathematics Vol. 608, Springer Berlin-Heidelberg-New York (1977). (1977) MR0552653
  5. Birkhoff, G., Pierce, R. S., Lattice-ordered rings, Anais Acad. Brasil. Ci. 28 (1956), 41-69. (1956) Zbl0070.26602MR0080099
  6. Bu, Q., Buskes, G., Kusraev, A. G., Bilinear Maps on Product of Vector Lattices: A Survey. Positivity. Trends in Mathematics, Birkhäuser Basel (2007), 97-126. (2007) MR2382216
  7. Buskes, G., Pagter, B. de, Rooij, A. van, 10.1016/0019-3577(91)90028-6, Indag. Math. New Ser. 4 (1991), 423-436. (1991) MR1149692DOI10.1016/0019-3577(91)90028-6
  8. Buskes, G., Kusraev, A. G., Representation and extension of orthoregular bilinear operators, Vladikavkaz. Math. Zh. 9 (2007), 16-29. (2007) MR2434620
  9. Buskes, G., Rooij, A. van, 10.1017/S0305004100077902, Math. Proc. Camb. Philos. Soc. 105 (1989), 523-536. (1989) MR0985689DOI10.1017/S0305004100077902
  10. Buskes, G., Rooij, A. van, 10.1023/A:1009826510957, Positivity 4 (2000), 227-231. (2000) MR1797125DOI10.1023/A:1009826510957
  11. Buskes, G., Rooij, A. van, 10.1216/rmjm/1008959667, Rocky Mt. J. Math. 31 (2001), 45-56. (2001) MR1821367DOI10.1216/rmjm/1008959667
  12. Buskes, G., Rooij, A. van, 10.1023/A:1025898718431, Positivity 7 (2003), 47-59. (2003) MR2028366DOI10.1023/A:1025898718431
  13. Grobler, J. J., Labuschagne, C. C. A., 10.1017/S0305004100065506, Math. Proc. Camb. Philos. Soc. 104 (1988), 331-345. (1988) Zbl0663.46006MR0948918DOI10.1017/S0305004100065506
  14. Huijsmans, C. B., Pagter, B. de, 10.1112/plms/s3-48.1.161, Proc. Lond. Math. Soc. III. Ser. 48 (1984), 161-174. (1984) Zbl0534.46010MR0721777DOI10.1112/plms/s3-48.1.161
  15. Luxemburg, W. A. J., Zaanen, A. C., Riesz spaces I, North-Holland Mathematical Library Amsterdam-London (1971). (1971) MR0511676
  16. Nakano, H., Product spaces of semi-ordered linear spaces, J. Fac. Sci., Hakkaidô Univ. Ser. I. 12 (1953), 163-210. (1953) Zbl0051.33901MR0062961
  17. Zaanen, A. C., Riesz spaces II, North-Holland Mathematical Library Amsterdam-New York-Oxford (1983). (1983) Zbl0519.46001MR0704021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.