Orthosymmetric bilinear map on Riesz spaces

Elmiloud Chil; Mohamed Mokaddem; Bourokba Hassen

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 3, page 307-317
  • ISSN: 0010-2628

Abstract

top
Let E be a Riesz space, F a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map T : E × E F is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123–134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial P : E F is linearly represented. This fits in the type of results by Y. Benyamini, S. Lassalle and J.L.G. Llavona [Homogeneous orthogonally additive polynomials on Banach lattices, Bulletin of the London Mathematical Society 38 (2006), no. 3 459–469].

How to cite

top

Chil, Elmiloud, Mokaddem, Mohamed, and Hassen, Bourokba. "Orthosymmetric bilinear map on Riesz spaces." Commentationes Mathematicae Universitatis Carolinae 56.3 (2015): 307-317. <http://eudml.org/doc/271613>.

@article{Chil2015,
abstract = {Let $E$ be a Riesz space, $F$ a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map $T:E\times E\rightarrow F$ is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123–134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial $P : E\rightarrow F$ is linearly represented. This fits in the type of results by Y. Benyamini, S. Lassalle and J.L.G. Llavona [Homogeneous orthogonally additive polynomials on Banach lattices, Bulletin of the London Mathematical Society 38 (2006), no. 3 459–469].},
author = {Chil, Elmiloud, Mokaddem, Mohamed, Hassen, Bourokba},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {orthosymmetric multilinear map; homogeneous polynomial; Riesz space},
language = {eng},
number = {3},
pages = {307-317},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Orthosymmetric bilinear map on Riesz spaces},
url = {http://eudml.org/doc/271613},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Chil, Elmiloud
AU - Mokaddem, Mohamed
AU - Hassen, Bourokba
TI - Orthosymmetric bilinear map on Riesz spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 3
SP - 307
EP - 317
AB - Let $E$ be a Riesz space, $F$ a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map $T:E\times E\rightarrow F$ is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123–134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial $P : E\rightarrow F$ is linearly represented. This fits in the type of results by Y. Benyamini, S. Lassalle and J.L.G. Llavona [Homogeneous orthogonally additive polynomials on Banach lattices, Bulletin of the London Mathematical Society 38 (2006), no. 3 459–469].
LA - eng
KW - orthosymmetric multilinear map; homogeneous polynomial; Riesz space
UR - http://eudml.org/doc/271613
ER -

References

top
  1. Aliprantis C.D., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
  2. Ben Amor F., 10.1007/s11117-009-0009-4, Positivity 14 (2010), 123–134. Zbl1204.06010MR2596468DOI10.1007/s11117-009-0009-4
  3. Benyamini Y., Lassalle S., Llavona J.L.G., 10.1112/S0024609306018364, Bull. London Math. Soc. 38 (2006), no. 3, 459–469. Zbl1110.46033MR2239041DOI10.1112/S0024609306018364
  4. Beukers F., Huijsmans C.B., 10.1017/S1446788700021790, J. Austral. Math. Soc. Ser. A 37 (1984), no. 1, 110–116. Zbl0555.06014MR0742249DOI10.1017/S1446788700021790
  5. Boulabiar K., 10.1017/S1446788700003451, J. Austral. Math. Soc. 75 (2003), no. 1, 1435–1442. Zbl1044.06010MR1984624DOI10.1017/S1446788700003451
  6. Bu Q., Buskes G., 10.1016/j.jmaa.2011.10.001, J. Math. Anal. Appl. 388 (2012), 845–862. MR2869792DOI10.1016/j.jmaa.2011.10.001
  7. Buskes G., van Rooij A., 10.1023/A:1009826510957, Positivity 4 (2000), no. 3, 227–231. Zbl0987.46002MR1797125DOI10.1023/A:1009826510957
  8. Carando D., Lassalle S., Zalduendo I., 10.1007/s00020-006-1439-z, Integral Equations Operator Theory, 56 (2006), no. 4, 597–602. Zbl1122.46025MR2284718DOI10.1007/s00020-006-1439-z
  9. Carando D., Lassalle S., Zalduendo I., 10.1017/S0013091509000248, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 609–618. Zbl1217.46028MR2720240DOI10.1017/S0013091509000248
  10. Chil E., 10.1007/s10587-011-0052-8, Czechoslovak Math. J. 61 (2011), no. 4, 873–880. Zbl1249.06048MR2886242DOI10.1007/s10587-011-0052-8
  11. Chil E., Meyer M., Mokaddem M., On orthosymmetric multilinear maps, Positivity (preprint). 
  12. de Pagter B., f -algebras and Orthomorphisms, thesis, Leiden, 1981. 
  13. Ibort A., Linares P., Llavona J.G., 10.2977/prims/1241553128, Publ. RIMS Kyoto Univ. 45 (2009), 519–524. Zbl1247.46037MR2510510DOI10.2977/prims/1241553128
  14. Jaramillo J.A., Prieto A., Zalduendo I., 10.1007/s13163-010-0055-2, Rev. Mat. Complut. 25 (2012), no. 1, 31–41. Zbl1279.46027MR2876915DOI10.1007/s13163-010-0055-2
  15. Luxemburg W.A., Zaanen A.C., Riesz Spaces I, North-Holland, Amsterdam, 1971. 
  16. Meyer-Nieberg P., Banach Lattices, Springer, Berlin, 1991. Zbl0743.46015MR1128093
  17. Palazuelos C., Peralta A.M., Villanueva I., 10.1093/qmath/ham042, Quart. J. Math. 59 (2008), 363–374. Zbl1159.46035MR2444066DOI10.1093/qmath/ham042
  18. Perez-García D., Villanueva I., 10.1016/j.jmaa.2004.12.036, J. Math. Anal. Appl. 306 (2005), no. 1, 97–105. MR2132891DOI10.1016/j.jmaa.2004.12.036
  19. Sundaresan K., Geometry of spaces of homogeneous polynomials on Banach lattices, Applied geometry and discrete mathematics, 571–586, DIMACS Series in Discrete Mathematics and Theoretical computer Science no. 4, Amer. Math. Soc., Providence, RI, 1991. Zbl0745.46028MR1116377

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.