Orthosymmetric bilinear map on Riesz spaces
Elmiloud Chil; Mohamed Mokaddem; Bourokba Hassen
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 3, page 307-317
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChil, Elmiloud, Mokaddem, Mohamed, and Hassen, Bourokba. "Orthosymmetric bilinear map on Riesz spaces." Commentationes Mathematicae Universitatis Carolinae 56.3 (2015): 307-317. <http://eudml.org/doc/271613>.
@article{Chil2015,
abstract = {Let $E$ be a Riesz space, $F$ a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map $T:E\times E\rightarrow F$ is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123–134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial $P : E\rightarrow F$ is linearly represented. This fits in the type of results by Y. Benyamini, S. Lassalle and J.L.G. Llavona [Homogeneous orthogonally additive polynomials on Banach lattices, Bulletin of the London Mathematical Society 38 (2006), no. 3 459–469].},
author = {Chil, Elmiloud, Mokaddem, Mohamed, Hassen, Bourokba},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {orthosymmetric multilinear map; homogeneous polynomial; Riesz space},
language = {eng},
number = {3},
pages = {307-317},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Orthosymmetric bilinear map on Riesz spaces},
url = {http://eudml.org/doc/271613},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Chil, Elmiloud
AU - Mokaddem, Mohamed
AU - Hassen, Bourokba
TI - Orthosymmetric bilinear map on Riesz spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 3
SP - 307
EP - 317
AB - Let $E$ be a Riesz space, $F$ a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map $T:E\times E\rightarrow F$ is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123–134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial $P : E\rightarrow F$ is linearly represented. This fits in the type of results by Y. Benyamini, S. Lassalle and J.L.G. Llavona [Homogeneous orthogonally additive polynomials on Banach lattices, Bulletin of the London Mathematical Society 38 (2006), no. 3 459–469].
LA - eng
KW - orthosymmetric multilinear map; homogeneous polynomial; Riesz space
UR - http://eudml.org/doc/271613
ER -
References
top- Aliprantis C.D., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
- Ben Amor F., 10.1007/s11117-009-0009-4, Positivity 14 (2010), 123–134. Zbl1204.06010MR2596468DOI10.1007/s11117-009-0009-4
- Benyamini Y., Lassalle S., Llavona J.L.G., 10.1112/S0024609306018364, Bull. London Math. Soc. 38 (2006), no. 3, 459–469. Zbl1110.46033MR2239041DOI10.1112/S0024609306018364
- Beukers F., Huijsmans C.B., 10.1017/S1446788700021790, J. Austral. Math. Soc. Ser. A 37 (1984), no. 1, 110–116. Zbl0555.06014MR0742249DOI10.1017/S1446788700021790
- Boulabiar K., 10.1017/S1446788700003451, J. Austral. Math. Soc. 75 (2003), no. 1, 1435–1442. Zbl1044.06010MR1984624DOI10.1017/S1446788700003451
- Bu Q., Buskes G., 10.1016/j.jmaa.2011.10.001, J. Math. Anal. Appl. 388 (2012), 845–862. MR2869792DOI10.1016/j.jmaa.2011.10.001
- Buskes G., van Rooij A., 10.1023/A:1009826510957, Positivity 4 (2000), no. 3, 227–231. Zbl0987.46002MR1797125DOI10.1023/A:1009826510957
- Carando D., Lassalle S., Zalduendo I., 10.1007/s00020-006-1439-z, Integral Equations Operator Theory, 56 (2006), no. 4, 597–602. Zbl1122.46025MR2284718DOI10.1007/s00020-006-1439-z
- Carando D., Lassalle S., Zalduendo I., 10.1017/S0013091509000248, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 609–618. Zbl1217.46028MR2720240DOI10.1017/S0013091509000248
- Chil E., 10.1007/s10587-011-0052-8, Czechoslovak Math. J. 61 (2011), no. 4, 873–880. Zbl1249.06048MR2886242DOI10.1007/s10587-011-0052-8
- Chil E., Meyer M., Mokaddem M., On orthosymmetric multilinear maps, Positivity (preprint).
- de Pagter B., -algebras and Orthomorphisms, thesis, Leiden, 1981.
- Ibort A., Linares P., Llavona J.G., 10.2977/prims/1241553128, Publ. RIMS Kyoto Univ. 45 (2009), 519–524. Zbl1247.46037MR2510510DOI10.2977/prims/1241553128
- Jaramillo J.A., Prieto A., Zalduendo I., 10.1007/s13163-010-0055-2, Rev. Mat. Complut. 25 (2012), no. 1, 31–41. Zbl1279.46027MR2876915DOI10.1007/s13163-010-0055-2
- Luxemburg W.A., Zaanen A.C., Riesz Spaces I, North-Holland, Amsterdam, 1971.
- Meyer-Nieberg P., Banach Lattices, Springer, Berlin, 1991. Zbl0743.46015MR1128093
- Palazuelos C., Peralta A.M., Villanueva I., 10.1093/qmath/ham042, Quart. J. Math. 59 (2008), 363–374. Zbl1159.46035MR2444066DOI10.1093/qmath/ham042
- Perez-García D., Villanueva I., 10.1016/j.jmaa.2004.12.036, J. Math. Anal. Appl. 306 (2005), no. 1, 97–105. MR2132891DOI10.1016/j.jmaa.2004.12.036
- Sundaresan K., Geometry of spaces of homogeneous polynomials on Banach lattices, Applied geometry and discrete mathematics, 571–586, DIMACS Series in Discrete Mathematics and Theoretical computer Science no. 4, Amer. Math. Soc., Providence, RI, 1991. Zbl0745.46028MR1116377
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.