Dans un espace biharmonique, on définit un balayage de couples de mesures et, en particulier, on retrouve les trois mesures du problème de Riquier. Une de ces mesures n’étant pas harmonique, son étude présente un certain intérêt. On établit, dans ce cadre, des inégalités de type Harnack et on introduit les fonctions hyperharmoniques d’ordre 2. Le problème de la construction d’un espace biharmonique à partir de deux espaces harmoniques est aussi étudié. Enfin, on donne des applications de la théorie...
Les théories axiomatiques existantes de fonctions harmoniques ne s’appliquent pas à des équations simples d’ordre , comme l’équation biharmonique ou le système équivalent , .
On développe donc ici, au moyen d’un faisceau de couples convenables de fonctions une approche axiomatique locale applicable à des équations du type , où () est un opérateur linéaire du second ordre elliptique ou parabolique. Deux axiomatiques harmoniques lui sont associées. On traite, dans ce cadre,...
The study of the equation (L₂L₁)*h = 0 or of the equivalent system L*₂h₂ = -h₁, L*₁h₁ = 0, where is a second order elliptic differential operator, leads us to the following general framework: Starting from a biharmonic space, for example the space of solutions (u₁,u₂) of the system L₁u₁ = -u₂, L₂u₂ = 0, being elliptic or parabolic, and by means of its Green pairs, we construct the associated adjoint biharmonic space which is in duality with the initial one.
Study of the equicontinuity of biharmonic functions, of the Harnack's principle and inequalities, and of their relations.
Download Results (CSV)