The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let F be a smooth projective surface contained in a smooth threefold T, and let X be the scheme corresponding to the divisor 2F on T. A locally Cohen-Macaulay curve C included in X gives rise to two effective divisors on F, namely the largest divisor P contained in C intersection F and the curve R residual to C intersection F in C. We show that under suitable hypotheses a general deformation of R and P lifts to a deformation of C on X, and give applications to the study of Hilbert schemes of locally...
We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of is glicci, that is, whether every zero-scheme in is glicci. We show that a general set of points in admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in .
Download Results (CSV)