The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Weak amenability of the second dual of a Banach algebra

M. Eshaghi GordjiM. Filali — 2007

Studia Mathematica

It is known that a Banach algebra inherits amenability from its second Banach dual **. No example is yet known whether this fails if one considers the weak amenability instead, but the property is known to hold for the group algebra L¹(G), the Fourier algebra A(G) when G is amenable, the Banach algebras which are left ideals in **, the dual Banach algebras, and the Banach algebras which are Arens regular and have every derivation from into * weakly compact. In this paper, we extend this class of...

Arens regularity of module actions

M. Eshaghi GordjiM. Filali — 2007

Studia Mathematica

We study the Arens regularity of module actions of Banach left or right modules over Banach algebras. We prove that if has a brai (blai), then the right (left) module action of on * is Arens regular if and only if is reflexive. We find that Arens regularity is implied by the factorization of * or ** when is a left or a right ideal in **. The Arens regularity and strong irregularity of are related to those of the module actions of on the nth dual ( n ) of . Banach algebras for which Z( **) = but Z t ( * * ) are...

Ideal amenability of module extensions of Banach algebras

Eshaghi M. GordjiF. HabibianB. Hayati — 2007

Archivum Mathematicum

Let 𝒜 be a Banach algebra. 𝒜 is called ideally amenable if for every closed ideal I of 𝒜 , the first cohomology group of 𝒜 with coefficients in I * is zero, i.e. H 1 ( 𝒜 , I * ) = { 0 } . Some examples show that ideal amenability is different from weak amenability and amenability. Also for n N , 𝒜 is called n -ideally amenable if for every closed ideal I of 𝒜 , H 1 ( 𝒜 , I ( n ) ) = { 0 } . In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.

Page 1

Download Results (CSV)