Galois groups and connection matrices for -difference equations.
The hypersurface in with an isolated quasi-homogeneous elliptic singularity of type , has a natural Poisson structure. We show that the family of del Pezzo surfaces of the corresponding type provides a semiuniversal Poisson deformation of that Poisson structure. We also construct a deformation-quantization of the coordinate ring of such a del Pezzo surface. To this end, we first deform the polynomial algebra to a noncommutative algebra with generators and the following 3 relations labelled...
The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflection functors and shift functors for generalized preprojective algebras and symplectic reflection algebras...
Page 1