The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Equivariant maps between certain G -spaces with  G = O ( n - 1 , 1 ) .

Aleksander MisiakEugeniusz Stasiak — 2001

Mathematica Bohemica

In this note, there are determined all biscalars of a system of s n linearly independent contravariant vectors in n -dimensional pseudo-Euclidean geometry of index one. The problem is resolved by finding a general solution of the functional equation F ( A 1 u , A 2 u , , A s u ) = ( sign ( det A ) ) F ( 1 u , 2 u , , s u ) for an arbitrary pseudo-orthogonal matrix A of index one and the given vectors 1 u , 2 u , , s u .

G -space of isotropic directions and G -spaces of ϕ -scalars with G = O ( n , 1 , )

Aleksander MisiakEugeniusz Stasiak — 2008

Mathematica Bohemica

There exist exactly four homomorphisms ϕ from the pseudo-orthogonal group of index one G = O ( n , 1 , ) into the group of real numbers 0 . Thus we have four G -spaces of ϕ -scalars ( , G , h ϕ ) in the geometry of the group G . The group G operates also on the sphere S n - 2 forming a G -space of isotropic directions ( S n - 2 , G , * ) . In this note, we have solved the functional equation F ( A * q 1 , A * q 2 , , A * q m ) = ϕ ( A ) · F ( q 1 , q 2 , , q m ) for given independent points q 1 , q 2 , , q m S n - 2 with 1 m n and an arbitrary matrix A G considering each of all four homomorphisms. Thereby we have determined all equivariant mappings F : ( S n - 2 ) m . ...

Page 1

Download Results (CSV)