The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Relatively perfect σ-algebras for flows

F. BlanchardB. Kamiński — 1995

Studia Mathematica

We show that for every ergodic flow, given any factor σ-algebra ℱ, there exists a σ-algebra which is relatively perfect with respect to ℱ. Using this result and Ornstein's isomorphism theorem for flows, we give a functorial definition of the entropy of flows.

Représentation par automate de fonctions continues de tore

F. BlanchardB. HostA. Maass — 1996

Journal de théorie des nombres de Bordeaux

Soient A p = { 0 , , p - 1 } et Z A p × A p un sous-système. Z est une représentation en base p d’une fonction f du tore si pour tout point x du tore, ses développements en base p sont liés par le couplage Z aux développements en base p de f ( x ) . On prouve que si f est représentable en base p alors f ( x ) = ( u x + m p - 1 ) mod 1 , où u et m A p . Réciproquement, toutes les fonctions de ce type sont représentables en base p par un transducteur. On montre finalement que les fonctions du tore qui peuvent être représentées par automate cellulaire sont exclusivement les multiplications...

Page 1

Download Results (CSV)