Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Osservazioni sui moduli delle superfici cubiche generali

Fabio Bardelli — 1978

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

In this Note, using a classical theorem of Sylvester, we find the equations and prove the rationality of an affine open set which is dense in the space of moduli of nonsingular cubic surfaces of the three-dimensional complex projective space.

Osservazioni sullo spazio dei moduli delle curve trigonali

Fabio BardelliAndrea Del Centina — 1981

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let C be an algebraic projective smooth and trigonal curve of genus g 5 . In this paper we define, in a way equivalent to that followed by A. Maroni in [1], an integer m , called the species of C , which is a birational invariant having the property that 0 m g + 2 3 and m g 0 mod(2). In section 1 we prove that for every g ( 5 ) and every m , as before, there are trigonal curves of genus g and species m . In section 2 we define the space g , 3 ; m 1 of moduli of trigonal curves of genus g and species m . We note that g , 3 ; m 1 is irreducible...

Osservazioni sullo spazio dei moduli delle curve trigonali

Fabio BardelliAndrea Del Centina — 1981

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Let C be an algebraic projective smooth and trigonal curve of genus g 5 . In this paper we define, in a way equivalent to that followed by A. Maroni in [1], an integer m , called the species of C , which is a birational invariant having the property that 0 m g + 2 3 and m g 0 mod(2). In section 1 we prove that for every g ( 5 ) and every m , as before, there are trigonal curves of genus g and species m . In section 2 we define the space g , 3 ; m 1 of moduli of trigonal curves of genus g and species m . We note that g , 3 ; m 1 is irreducible...

Page 1

Download Results (CSV)