The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Characterizing projective general unitary groups PGU 3 ( q 2 ) by their complex group algebras

Farrokh ShirjianAli Iranmanesh — 2017

Czechoslovak Mathematical Journal

Let G be a finite group. Let X 1 ( G ) be the first column of the ordinary character table of G . We will show that if X 1 ( G ) = X 1 ( PGU 3 ( q 2 ) ) , then G PGU 3 ( q 2 ) . As a consequence, we show that the projective general unitary groups PGU 3 ( q 2 ) are uniquely determined by the structure of their complex group algebras.

A variation of Thompson's conjecture for the symmetric groups

Mahdi AbedeiAli IranmaneshFarrokh Shirjian — 2020

Czechoslovak Mathematical Journal

Let G be a finite group and let N ( G ) denote the set of conjugacy class sizes of G . Thompson’s conjecture states that if G is a centerless group and S is a non-abelian simple group satisfying N ( G ) = N ( S ) , then G S . In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that G Sym ( p + 1 ) if and only if | G | = ( p + 1 ) ! and G has a special conjugacy class of size ( p + 1 ) ! / p , where p > 5 is a prime number. Consequently, if G is a centerless group with N ( G ) = N ( Sym ( p + 1 ) ) , then G Sym ( p + 1 ) .

Page 1

Download Results (CSV)