The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a finite group. Let be the first column of the ordinary character table of . We will show that if , then . As a consequence, we show that the projective general unitary groups are uniquely determined by the structure of their complex group algebras.
Let be a finite group and let denote the set of conjugacy class sizes of . Thompson’s conjecture states that if is a centerless group and is a non-abelian simple group satisfying , then . In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that if and only if and has a special conjugacy class of size , where is a prime number. Consequently, if is a centerless group with , then .
Download Results (CSV)