On certain anti-invariant submanifolds of an S-manifold
In [6], C. Dierick deals with a small but important collection of norms in the product of a finite number of normed linear spaces and he extends to such products some results on functional characterization of best approximations. In this paper we establish the widest scope in which the mentioned results remain valid.
It is an open question when the direct sum of normed spaces inherits uniform rotundity in every direction from the factor spaces. M. Smith [4] showed that, in general, the answer is negative. The purpose of this paper is to carry out a complete study of Smith's counterexample.
We prove the continuity of the rotundity modulus relative to linear subspaces of normed spaces. As a consequence we reduce the study of uniform rotundity relative to linear subspaces to the study of the same property relative to closed linear subspaces of Banach spaces.
Sea X una variable aleatoria con función de distribución F(x) y función de densidad f(x) y X1, X2,..., Xn un conjunto de observaciones de la variable que pueden ser dependientes. Se definen dos estimadores no paramétricos generales (uno recursivo y el otro no recursivo) de la función de distribución. Bajo condiciones aceptables se obtiene el sesgo y la varianza y covarianza asintótica de los estimadores definidos. Finalmente...
Se define un estimador no paramétrico, recursivo, de la función de regresión r(x) = E(Y/X = x), que se calcula a partir de un conjunto de n observaciones {(X1,Yi): i = 1, ..., n} del vector aleatorio (X,Y). Bajo la hipótesis de que los datos son idénticamente distribuidos pero no necesariamente independientes, lo que permite utilizar el estimador definido para estimar la función de autorregresión de una serie de tiempo, se obtienen resultados sobre la consistencia...
Sea {Xt: t ∈ Z} una serie de tiempo estacionaria, con valores en Rp, verificando la condición de ser α-mixing o L2-estable. A partir de una muestra de tamaño n se define una amplia clase de estimadores no paramétricos de la función de densidad f(x) asociada al proceso, y de la función de autorregresión de orden k: r(y) = E(g(Xt+1)/(Xt-k+1 ... Xt) = y), y ∈ Rk...
Many authors have studied the geometry of submanifolds of Kaehlerian and Sasakian manifolds. On the other hand, David E. Blair has initiated the study of S-manifolds, which reduce, in particular cases, to Sasakian manifolds ([1, 2]). I. Mihai ([8]) and L. Ornea ([9]) have investigated CR-submanifolds of S-manifolds. The purpose of the present paper is to study a special kind of such submanifolds, namely the normal CR-submanifolds. In Sections 1 and 2, we review basic formulas and definitions for...
In this work a family of stochastic differential equations whose solutions are multidimensional diffusion-type (non necessarily markovian) processes is considered, and the estimation of a parametric vector θ which relates the coefficients is studied. The conditions for the existence of the likelihood function are proved and the estimator is obtained by continuously observing the process. An application for Diffusion Branching Processes is given. This problem has been studied in some special cases...
A classification theorem is obtained for submanifolds with parallel second fundamental form of an 𝑆-manifold whose invariant f-sectional curvature is constant.
The objective of this note is the announcement of two results of Ambrosetti-Prodi type concerning the existence of periodic (respectively bounded) solutions of the first order differential equation x' = f (t,x).
In this paper, for a cocommutative Hopf algebra H in a symmetric closed category C with basic object K, we get an isomorphism between the group of isomorphism classes of Galois H-objects with a normal basis and the second cohomology group H2(H,K) of H with coefficients in K. Using this result, we obtain a direct sum decomposition for the Brauer group of H-module Azumaya monoids with inner action: BMinn(C,H) ≅ B(C) ⊕ H2(H,K) ...
Let τ be an invertible skew pairing on (B,H) where B and H are Hopf algebras in a symmetric monoidal category C with (co)equalizers. Assume that H is quasitriangular. Then we obtain a new algebra structure such that B is a Hopf algebra in the braided category γD and there exists a Hopf algebra isomorphism w: B ∞ H → B [×] H in C, where B ∞ H is a Hopf algebra with (co)algebra structure the smash (co)product and B [×] H is the Hopf algebra defined by Doi and Takeuchi.
Page 1 Next