The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Continuity of the quenching time in a semilinear parabolic equation

Théodore BoniFirmin N'Gohisse — 2008

Annales UMCS, Mathematica

In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.

Quenching time of some nonlinear wave equations

Firmin K. N’gohisseThéodore K. Boni — 2009

Archivum Mathematicum

In this paper, we consider the following initial-boundary value problem u t t ( x , t ) = ε L u ( x , t ) + f ( u ( x , t ) ) in Ω × ( 0 , T ) , u ( x , t ) = 0 on Ω × ( 0 , T ) , u ( x , 0 ) = 0 in Ω , u t ( x , 0 ) = 0 in Ω , where Ω is a bounded domain in N with smooth boundary Ω , L is an elliptic operator, ε is a positive parameter, f ( s ) is a positive, increasing, convex function for s ( - , b ) , lim s b f ( s ) = and 0 b d s f ( s ) < with b = const > 0 . Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation α ' ' ( t ) = f ( α ( t ) ) , t > 0 , α ( 0 ) = 0 , α ' ( 0 ) = 0 , as ε goes to zero. We also show that the above result remains...

Page 1

Download Results (CSV)