Famiglie di curve nodali su superfici proiettive
The main purpose of this paper is twofold. We first analyze in detail the meaningful geometric aspect of the method introduced in [12], concerning families of irreducible, nodal curves on a smooth, projective threefold X. This analysis gives some geometric interpretations not investigated in [12] and highlights several interesting connections with families of other singular geometric objects related to X and to other varieties. Then we use this method to study analogous problems for families of...
We deal with a reducible projective surface with so-called , which are a generalization of normal crossings. First we compute the of , i.e. the dimension of the vector space of global sections of the dualizing sheaf . Then we prove that, when is smoothable, i.e. when is the central fibre of a flat family parametrized by a disc, with smooth general fibre, then the -genus of the fibres of is constant.
Page 1