On the genus of reducible surfaces and degenerations of surfaces
Alberto Calabri[1]; Ciro Ciliberto[2]; Flaminio Flamini[3]; Rick Miranda[4]
- [1] Università degli Studi di Padova Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Via Trieste, 63 35121 Padova (Italy)
- [2] Università degli Studi di Roma “Tor Vergata" Dipartimento di Matematica Via della Ricerca Scientifica 00133 Roma (Italy)
- [3] Università degli Studi di Roma “Tor Vergadata” Dipartimento di Matematica Via della Ricerca Scientifica 00133 Roma (Italy)
- [4] Colorado State University Department of Mathematics 101 Weber Building Fort Collins, CO 80523–1874 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 2, page 491-516
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCalabri, Alberto, et al. "On the genus of reducible surfaces and degenerations of surfaces." Annales de l’institut Fourier 57.2 (2007): 491-516. <http://eudml.org/doc/10230>.
@article{Calabri2007,
abstract = {We deal with a reducible projective surface $X$ with so-called Zappatic singularities, which are a generalization of normal crossings. First we compute the $\omega $-genus$p_\omega (X)$ of $X$, i.e. the dimension of the vector space of global sections of the dualizing sheaf $\omega _X$. Then we prove that, when $X$ is smoothable, i.e. when $X$ is the central fibre of a flat family $\pi :\mathcal\{X\}\rightarrow \Delta $ parametrized by a disc, with smooth general fibre, then the $\omega $-genus of the fibres of $\pi $ is constant.},
affiliation = {Università degli Studi di Padova Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Via Trieste, 63 35121 Padova (Italy); Università degli Studi di Roma “Tor Vergata" Dipartimento di Matematica Via della Ricerca Scientifica 00133 Roma (Italy); Università degli Studi di Roma “Tor Vergadata” Dipartimento di Matematica Via della Ricerca Scientifica 00133 Roma (Italy); Colorado State University Department of Mathematics 101 Weber Building Fort Collins, CO 80523–1874 (USA)},
author = {Calabri, Alberto, Ciliberto, Ciro, Flamini, Flaminio, Miranda, Rick},
journal = {Annales de l’institut Fourier},
keywords = {Degenerations of surfaces; singularities; birational geometry; topological invariants; degeneration of surfaces},
language = {eng},
number = {2},
pages = {491-516},
publisher = {Association des Annales de l’institut Fourier},
title = {On the genus of reducible surfaces and degenerations of surfaces},
url = {http://eudml.org/doc/10230},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Calabri, Alberto
AU - Ciliberto, Ciro
AU - Flamini, Flaminio
AU - Miranda, Rick
TI - On the genus of reducible surfaces and degenerations of surfaces
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 491
EP - 516
AB - We deal with a reducible projective surface $X$ with so-called Zappatic singularities, which are a generalization of normal crossings. First we compute the $\omega $-genus$p_\omega (X)$ of $X$, i.e. the dimension of the vector space of global sections of the dualizing sheaf $\omega _X$. Then we prove that, when $X$ is smoothable, i.e. when $X$ is the central fibre of a flat family $\pi :\mathcal{X}\rightarrow \Delta $ parametrized by a disc, with smooth general fibre, then the $\omega $-genus of the fibres of $\pi $ is constant.
LA - eng
KW - Degenerations of surfaces; singularities; birational geometry; topological invariants; degeneration of surfaces
UR - http://eudml.org/doc/10230
ER -
References
top- Alberto Calabri, Ciro Ciliberto, Flaminio Flamini, Rick Miranda, On the of degenerations of surfaces and the multiple point formula Zbl1125.14018
- Alberto Calabri, Ciro Ciliberto, Flaminio Flamini, Rick Miranda, On the geometric genus of reducible surfaces and degenerations of surfaces to unions of planes, The Fano Conference (2004), 277-312, Univ. Torino, Turin Zbl1071.14057MR2112579
- Ciro Ciliberto, Angelo Lopez, Rick Miranda, Projective degenerations of surfaces, Gaussian maps, and Fano threefolds, Invent. Math. 114 (1993), 641-667 Zbl0807.14028MR1244915
- Ciro Ciliberto, Rick Miranda, Mina Teicher, Pillow degenerations of surfaces, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001) 36 (2001), 53-63, Kluwer Acad. Publ., Dordrecht Zbl1006.14014MR1866890
- Daniel C. Cohen, Alexander I. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv. 72 (1997), 285-315 Zbl0959.52018MR1470093
- The birational geometry of degenerations, 29 (1983), FriedmanRobertR., Mass.
- William Fulton, Introduction to toric varieties, 131 (1993), Princeton University Press, Princeton, NJ Zbl0813.14039MR1234037
- Robin Hartshorne, Families of curves in and Zeuthen’s problem, Mem. Amer. Math. Soc. 130 (1997) Zbl0894.14001MR1401493
- G. Kempf, Finn Faye Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, (1973), Springer-Verlag, Berlin Zbl0271.14017MR335518
- János Kollár, Toward moduli of singular varieties, Compositio Math. 56 (1985), 369-398 Zbl0666.14003MR814554
- B. G. Moishezon, Stable branch curves and braid monodromies, Algebraic geometry (Chicago, Ill., 1980) 862 (1981), 107-192, Springer, Berlin Zbl0476.14005MR644819
- Boris Moishezon, Mina Teicher, Braid group techniques in complex geometry. III. Projective degeneration of , Classification of algebraic varieties (L’Aquila, 1992) 162 (1994), 313-332, Amer. Math. Soc., Providence, RI Zbl0815.14023MR1272706
- David R. Morrison, The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982) 106 (1984), 101-119, Princeton Univ. Press, Princeton, NJ Zbl0576.32034MR756848
- Francesco Severi, Vorlesungen über algebraische Geometrie, 1 (1921), Teubner, Leipzig Zbl48.0687.01
- M. Teicher, Hirzebruch surfaces: degenerations, related braid monodromy, Galois covers, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) 241 (1999), 305-325, Amer. Math. Soc., Providence, RI Zbl0993.14017MR1720873
- Guido Zappa, Su alcuni contributi alla conosceuza della struttura topologica delle superficie algebriche, dati dal metodo dello spezzamento in sistemi di piani, Pont. Acad. Sci. Acta 7 (1943), 4-8 Zbl0061.34908MR26362
- Guido Zappa, Alla ricerca di nuovi significati topologici dei generi geometrico e aritmetico di una superficie algebrica, Ann. Mat. Pura Appl. (4) 30 (1949), 123-146 Zbl0041.48006MR36545
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.