Discrete dynamical systems are given by the pair (X, f ) where X is a compact metric space and f : X → X a continuous maps. During years, a long list of results have appeared to precise and understand what is the complexity of the systems. Among them, one of the most popular is that of topological entropy. In modern applications other conditions on X and f have been considered. For example X can be non-compact or f can be discontinuous (only in a finite number of points and with bounded jumps on...
In this note we characterize chaotic functions (in the sense of Li and Yorke) with topological entropy zero in terms of the structure of their maximal scrambled sets. In the interim a description of all maximal scrambled sets of these functions is also found.
In this paper we study the commutativity property for topological sequence entropy. We prove that if is a compact metric space and are continuous maps then for every increasing sequence if , and construct a counterexample for the general case. In the interim, we also show that the equality is true if but does not necessarily hold if is an arbitrary compact metric space.
Given the plane triangle with vertices (0,0), (0,4) and (4,0) and the transformation F: (x,y) ↦ (x(4-x-y),xy) introduced by A. N. Sharkovskiĭ, we prove the existence of the following objects: a unique invariant curve of spiral type, a periodic trajectory of period 4 (given explicitly) and a periodic trajectory of period 5 (described approximately). Also, we give a decomposition of the triangle which helps to understand the global dynamics of this discrete system which is linked with the behavior...
Download Results (CSV)