The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

La relation linéaire a = b + c + + t entre les racines d’un polynôme

Franck Lalande — 2007

Journal de Théorie des Nombres de Bordeaux

Nous nous intéressons à la question suivante : À quelles conditions un groupe G est-il le groupe de Galois (principalement sur le corps des rationnels) d’un polynôme irréductible dont certaines racines distinctes vérifient une relation linéaire du type a = b + c + + t  ? Nous montrons que la relation a = b + c est possible dès que G contient un sous-groupe d’ordre 6 , nous décrivons les groupes abéliens pour lesquels la relation a = b + c + d est satisfaite et construisons une famille de relations a = b + c + + t de longueur 1 + ( m - 2 ) ( m - 3 ) / 2 pour le groupe alterné...

A propos de la relation galoisienne x 1 = x 2 + x 3

Franck Lalande — 2010

Journal de Théorie des Nombres de Bordeaux

L’existence d’un polynôme f , irréductible sur un corps k de caractéristique 0 et dont trois racines vérifient la relation linéaire x 1 = x 2 + x 3 , ne dépend que de la paire de groupes finis ( G , H ) G = Gal k ( f ) et H G est le fixateur d’une racine. Le cas régulier ( H = 1 ) est désormais assez bien décrit. On démontre dans ce texte que pour de nombreuses paires ( G , H ) primitives ( H sous-groupe maximal de G ) et en particulier pour toutes celles de degré 50 , la relation x 1 = x 2 + x 3 n’est pas réalisable. En appendice, Joseph Oesterlé démontre...

Page 1

Download Results (CSV)