Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

La relation linéaire a = b + c + + t entre les racines d’un polynôme

Franck Lalande — 2007

Journal de Théorie des Nombres de Bordeaux

Nous nous intéressons à la question suivante : À quelles conditions un groupe G est-il le groupe de Galois (principalement sur le corps des rationnels) d’un polynôme irréductible dont certaines racines distinctes vérifient une relation linéaire du type a = b + c + + t  ? Nous montrons que la relation a = b + c est possible dès que G contient un sous-groupe d’ordre 6 , nous décrivons les groupes abéliens pour lesquels la relation a = b + c + d est satisfaite et construisons une famille de relations a = b + c + + t de longueur 1 + ( m - 2 ) ( m - 3 ) / 2 pour le groupe alterné...

A propos de la relation galoisienne x 1 = x 2 + x 3

Franck Lalande — 2010

Journal de Théorie des Nombres de Bordeaux

L’existence d’un polynôme f , irréductible sur un corps k de caractéristique 0 et dont trois racines vérifient la relation linéaire x 1 = x 2 + x 3 , ne dépend que de la paire de groupes finis ( G , H ) G = Gal k ( f ) et H G est le fixateur d’une racine. Le cas régulier ( H = 1 ) est désormais assez bien décrit. On démontre dans ce texte que pour de nombreuses paires ( G , H ) primitives ( H sous-groupe maximal de G ) et en particulier pour toutes celles de degré 50 , la relation x 1 = x 2 + x 3 n’est pas réalisable. En appendice, Joseph Oesterlé démontre...

Page 1

Download Results (CSV)