On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators.
We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.
We prove a fractional version of the Hardy-Sobolev-Maz’ya inequality for arbitrary domains and norms with p ≥ 2. This inequality combines the fractional Sobolev and the fractional Hardy inequality into a single inequality, while keeping the sharp constant in the Hardy inequality.
In this paper we prove a two-term asymptotic formula for the spectral counting function for a D magnetic Schrödinger operator on a domain (with Dirichlet boundary conditions) in a semiclassical limit and with strong magnetic field. By scaling, this is equivalent to a thermodynamic limit of a D Fermi gas submitted to a constant external magnetic field. The original motivation comes from a paper by H. Kunz in which he studied, among other things, the boundary correction for the grand-canonical...
Page 1