Closed subgroups in Banach spaces
We show that zero-dimensional nondiscrete closed subgroups do exist in Banach spaces E. This happens exactly when E contains an isomorphic copy of . Other results on subgroups of linear spaces are obtained.
We show that zero-dimensional nondiscrete closed subgroups do exist in Banach spaces E. This happens exactly when E contains an isomorphic copy of . Other results on subgroups of linear spaces are obtained.
We explore the interior geometry of the CAT(0) spaces , constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffraction effect experienced by the family of geodesic rays that emanate from a basepoint and pass through a certain singular point called a triple point, and we describe the shadow this family casts on the boundary. This diffraction effect is codified in the Transformation Rules stated in Section 3 of this paper. The Transformation Rules have various applications....
Page 1