The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin laplacian

Pedro Ricardo Simão AntunesPedro FreitasJames Bernard Kennedy — 2013

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimising the th-eigenvalue of the Robin Laplacian in R. Although for  = 1,2 and a positive boundary parameter it is known that the minimisers do not depend on , we demonstrate numerically that this will not always be the case and illustrate how the optimiser will depend on . We derive a Wolf–Keller type result for this problem and show that optimal eigenvalues grow at most with , which is in sharp contrast with the Weyl asymptotics for a fixed domain....

Page 1

Download Results (CSV)