Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin laplacian

Pedro Ricardo Simão Antunes; Pedro Freitas; James Bernard Kennedy

ESAIM: Control, Optimisation and Calculus of Variations (2013)

  • Volume: 19, Issue: 2, page 438-459
  • ISSN: 1292-8119

Abstract

top
We consider the problem of minimising the nth-eigenvalue of the Robin Laplacian in RN. Although for n = 1,2 and a positive boundary parameter α it is known that the minimisers do not depend on α, we demonstrate numerically that this will not always be the case and illustrate how the optimiser will depend on α. We derive a Wolf–Keller type result for this problem and show that optimal eigenvalues grow at most with n1/N, which is in sharp contrast with the Weyl asymptotics for a fixed domain. We further show that the gap between consecutive eigenvalues does go to zero as n goes to infinity. Numerical results then support the conjecture that for each n there exists a positive value of αn such that the nth eigenvalue is minimised by n disks for all 0 < α < αn and, combined with analytic estimates, that this value is expected to grow with n1/N.

How to cite

top

Simão Antunes, Pedro Ricardo, Freitas, Pedro, and Kennedy, James Bernard. "Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin laplacian." ESAIM: Control, Optimisation and Calculus of Variations 19.2 (2013): 438-459. <http://eudml.org/doc/272935>.

@article{SimãoAntunes2013,
abstract = {We consider the problem of minimising the nth-eigenvalue of the Robin Laplacian in RN. Although for n = 1,2 and a positive boundary parameter α it is known that the minimisers do not depend on α, we demonstrate numerically that this will not always be the case and illustrate how the optimiser will depend on α. We derive a Wolf–Keller type result for this problem and show that optimal eigenvalues grow at most with n1/N, which is in sharp contrast with the Weyl asymptotics for a fixed domain. We further show that the gap between consecutive eigenvalues does go to zero as n goes to infinity. Numerical results then support the conjecture that for each n there exists a positive value of αn such that the nth eigenvalue is minimised by n disks for all 0 &lt; α &lt; αn and, combined with analytic estimates, that this value is expected to grow with n1/N.},
author = {Simão Antunes, Pedro Ricardo, Freitas, Pedro, Kennedy, James Bernard},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Robin laplacian; eigenvalues; optimisation; Robin Laplacian},
language = {eng},
number = {2},
pages = {438-459},
publisher = {EDP-Sciences},
title = {Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin laplacian},
url = {http://eudml.org/doc/272935},
volume = {19},
year = {2013},
}

TY - JOUR
AU - Simão Antunes, Pedro Ricardo
AU - Freitas, Pedro
AU - Kennedy, James Bernard
TI - Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin laplacian
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 2
SP - 438
EP - 459
AB - We consider the problem of minimising the nth-eigenvalue of the Robin Laplacian in RN. Although for n = 1,2 and a positive boundary parameter α it is known that the minimisers do not depend on α, we demonstrate numerically that this will not always be the case and illustrate how the optimiser will depend on α. We derive a Wolf–Keller type result for this problem and show that optimal eigenvalues grow at most with n1/N, which is in sharp contrast with the Weyl asymptotics for a fixed domain. We further show that the gap between consecutive eigenvalues does go to zero as n goes to infinity. Numerical results then support the conjecture that for each n there exists a positive value of αn such that the nth eigenvalue is minimised by n disks for all 0 &lt; α &lt; αn and, combined with analytic estimates, that this value is expected to grow with n1/N.
LA - eng
KW - Robin laplacian; eigenvalues; optimisation; Robin Laplacian
UR - http://eudml.org/doc/272935
ER -

References

top
  1. [1] C.J.S. Alves and P.R.S. Antunes, The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes. Comput. Mater. Continua2 (2005) 251–266. 
  2. [2] P.R.S. Antunes and P. Freitas, Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154 (2012). DOI: 10.1007/s10957-011-9983-3. Zbl1252.90076MR2931377
  3. [3] M.-H. Bossel, Membranes élastiquement liées : extension du théorème de Rayleigh–Faber–Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math.302 (1986) 47–50. Zbl0606.73018MR827106
  4. [4] D. Bucur, Minimization of the kth eigenvalue of the Dirichlet Laplacian. Preprint (2012). Zbl1254.35165MR2989451
  5. [5] D. Bucur and D. Daners, An alternative approach to the Faber-Krahn inequality for Robin problems. Calc. Var. Partial Differ. Equ.37 (2010) 75–86. Zbl1186.35118MR2564398
  6. [6] D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. R. Soc. Lond. Proc. A456 (2000) 985–996. Zbl0974.35082MR1805088
  7. [7] B. Colbois and A. El Soufi, Extremal eigenvalues of the Laplacian on Euclidean domains and Riemannian manifolds. Preprint (2012). 
  8. [8] R. Courant and D. Hilbert, Methods of mathematical physics I. Interscience Publishers, New York (1953). Zbl0053.02805MR65391
  9. [9] F.E. Curtis and M.L. Overton, A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization. SIAM J. Optim.22 (2012) 474–500. Zbl1246.49031MR2968863
  10. [10] E.N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions. J. Differ. Equ.138 (1997) 86–132. Zbl0886.35063MR1458457
  11. [11] D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann.335 (2006) 767–785. Zbl1220.35103MR2232016
  12. [12] G. Faber, Beweis, dass unter allen homogenen membranen von gleicher Fläche und gleicher spannung die kreisförmige den tiefsten grundton gibt. Sitz. Ber. Bayer. Akad. Wiss. (1923) 169–172. Zbl49.0342.03JFM49.0342.03
  13. [13] T. Giorgi and R. Smits, Bounds and monotonicity for the generalized Robin problem. Z. Angew. Math. Phys.59 (2008) 600–618. Zbl1157.35072MR2417381
  14. [14] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). Zbl1109.35081MR2251558
  15. [15] T. Kato, Perturbation theory for linear operators, 2nd edition. Springer-Verlag, Berlin. Grundlehren der Mathematischen Wissenschaften 132 (1976). Zbl0342.47009MR407617
  16. [16] J.B. Kennedy, An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions. Proc. Amer. Math. Soc.137 (2009) 627–633. Zbl1181.35156MR2448584
  17. [17] J.B. Kennedy, On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians. Z. Angew. Math. Phys.61 (2010) 781–792. Zbl1221.35262MR2726626
  18. [18] E. Krahn, Über eine von Rayleigh formulierte minimaleigenschaft des kreises. Math. Ann.94 (1924) 97–100. Zbl51.0356.05JFM51.0356.05
  19. [19] E. Krahn, Über Minimaleigenshaften der Kugel in drei und mehr dimensionen. Acta Comm. Univ. Dorpat. A9 (1926) 1–44. Zbl52.0510.03JFM52.0510.03
  20. [20] A.A. Lacey, J.R. Ockendon and J. Sabina, Multidimensional reaction-diffusion equations with nonlinear boundary conditions. SIAM J. Appl. Math.58 (1998) 1622–1647. Zbl0932.35120MR1637882
  21. [21] D. Mazzoleni and A. Pratelli, Existence of minimizers for spectral problems. Preprint (2012). Zbl1296.35100MR3095209
  22. [22] J. Nocedal and S.J. Wright, Numer. Optim. Springer (1999). 
  23. [23] E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM : COCV 10 (2004) 315–330. Zbl1076.74045MR2084326
  24. [24] J.W.S. Rayleigh, The theory of sound, 2nd edition. Macmillan, London (1896) (reprinted : Dover, New York (1945)). Zbl0061.45904MR16009
  25. [25] W. Rudin, Real and Complex Analysis, 3rd edition. McGraw-Hill, New York (1987). Zbl0278.26001MR924157
  26. [26] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech. Anal.3 (1954) 343–356. Zbl0055.08802MR61749
  27. [27] H.F. Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem. J. Rational Mech. Anal.5 (1956) 633–636. Zbl0071.09902MR79286
  28. [28] S.A. Wolf and J.B. Keller, Range of the first two eigenvalues of the Laplacian. Proc. Roy. Soc. London A 447, (1994) 397–412. Zbl0816.35097MR1312811

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.