Metric properties of positively ordered monoids.
The real line ℝ may be characterized as the unique non-atomic directed partially ordered abelian group which is monotone σ-complete (countable increasing bounded sequences have suprema), has the countable refinement property (countable sums of positive (possibly infinite) elements have common refinements) and is linearly ordered. We prove here that the latter condition is not redundant, thus solving an old problem by A. Tarski, by proving that there are many spaces (in particular, of arbitrarily...
We say that a ⟨∨,0⟩-semilattice S is conditionally co-Brouwerian if (1) for all nonempty subsets X and Y of S such that X ≤ Y (i.e. x ≤ y for all ⟨x,y⟩ ∈ X × Y), there exists z ∈ S such that X ≤ z ≤ Y, and (2) for every subset Z of S and all a, b ∈ S, if a ≤ b ∨ z for all z ∈ Z, then there exists c ∈ S such that a ≤ b ∨ c and c ≤ Z. By restricting this definition to subsets X, Y, and Z of less than κ elements, for an infinite cardinal κ, we obtain the definition of a conditionally κ-co-Brouwerian...
A 1984 problem of S. Z. Ditor asks whether there exists a lattice of cardinality ℵ₂, with zero, in which every principal ideal is finite and every element has at most three lower covers. We prove that the existence of such a lattice follows from either one of two axioms that are known to be independent of ZFC, namely (1) Martin’s Axiom restricted to collections of ℵ₁ dense subsets in posets of precaliber ℵ₁, (2) the existence of a gap-1 morass. In particular, the existence of such a lattice is consistent...
We prove the following result:
Denote by PSelf Ω (resp., Self Ω) the partial (resp., full) transformation monoid over a set Ω, and by Sub V (resp., End V) the collection of all subspaces (resp., endomorphisms) of a vector space V. We prove various results that imply the following: (1) If card Ω ≥ 2, then Self Ω has a semigroup embedding into the dual of Self Γ iff . In particular, if Ω has at least two elements, then there exists no semigroup embedding from Self Ω into the dual of PSelf Ω. (2) If V is infinite-dimensional, then...
Page 1