The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Persistence of iterated partial sums

Amir DemboJian DingFuchang Gao — 2013

Annales de l'I.H.P. Probabilités et statistiques

Let S n ( 2 ) denote the iterated partial sums. That is, S n ( 2 ) = S 1 + S 2 + + S n , where S i = X 1 + X 2 + + X i . Assuming X 1 , X 2 , ... , X n are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities p n ( 2 ) : = max 1 i n S i ( 2 ) l t ; 0 c 𝔼 | S n + 1 | ( n + 1 ) 𝔼 | X 1 | , with c 6 30 (and c = 2 whenever X 1 is symmetric). The converse inequality holds whenever the non-zero min ( - X 1 , 0 ) is bounded or when it has only finite third moment and in addition X 1 is squared integrable. Furthermore, p n ( 2 ) n - 1 / 4 for any non-degenerate squared integrable, i.i.d., zero-mean X i . In contrast, we show that for any 0 l t ; γ l t ; 1 / 4 there exist integrable, zero-mean...

Page 1

Download Results (CSV)