Distances invariantes et L-cliques sur certains demi-groupes finis
Let a, b, c be relatively prime positive integers such that . Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of in positive integers is x=y=z=2. If n=1, then, equivalently, the equation , for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.
To find a zero of a maximal monotone operator, an extension of the Auxiliary Problem Principle to nonsymmetric auxiliary operators is proposed. The main convergence result supposes a relationship between the main operator and the nonsymmetric component of the auxiliary operator. When applied to the particular case of convex-concave functions, this result implies the convergence of the parallel version of the Arrow-Hurwicz algorithm under the assumptions of Lipschitz and partial Dunn properties...
Page 1