A maximum principle for biharmonic functions in Lipschitz and C1 domains.
In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator , on an arbitrary bounded Lipschitz domain in . We establish existence and uniqueness results when the boundary values have first derivatives in , and the normal derivative is in . The resulting solution takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of is shown to be in .
Let be an elliptic system of higher order homogeneous partial differential operators. We establish in this article the equivalence in norm between the maximal function and the square function of solutions to in Lipschitz domains. Several applications of this result are discussed.
Page 1