Characterization of interpolation spaces and regularity properties for holomorphis semigroups.
In questo lavoro si considera il problema del controllo ottimo per un'equazione lineare con ritardo in uno spazio di Hilbert, con costo quadratico. Si dimostra che il problema della sintesi si traduce in una equazione di Riccati in uno opportuno spazio prodotto e si prova che tale equazione ammette un’unica soluzione.
In questo lavoro si considera il problema del controllo ottimo per un'equazione lineare con ritardo in uno spazio di Hilbert, con costo quadratico. Si dimostra che il problema della sintesi si traduce in una equazione di Riccati in uno opportuno spazio prodotto e si prova che tale equazione ammette un’unica soluzione.
We give necessary and sufficient conditions on the initial data such that the solutions of parabolic equations have a prescribed Sobolev regularity in time and space.
Si studia il problema di Cauchy per una equazione differenziale derivante dallo studio della diffusione di una singola specie biologica. Si dimostra resistenza e l'unicità della soluzione di tale problema e la dipendenza continua dai dati.
Viene dimostrata l’esistenza e l’unicità globale della soluzione di un’equazione funzionale in uno spazio di Hilbert e si caratterizza il generatore infinitesimale del semigruppo ad essa associato. Il risultato è applicato ad equazioni integrodifferenziali a derivate parziali di tipo parabolico in cui compaiono argomenti con ritardo (discreto e continuo) nelle derivate spaziali di ordine massimo.
In questo lavoro si considera un’equazione alle derivate parziali del primo ordine con una condizione sulla frontiera di tipo integrale. Si studia resistenza, l'unicità e il comportamento asintotico delle soluzioni.
Viene dimostrata l’esistenza e l’unicità globale della soluzione di un’equazione funzionale in uno spazio di Hilbert e si caratterizza il generatore infinitesimale del semigruppo ad essa associato. Il risultato è applicato ad equazioni integrodifferenziali a derivate parziali di tipo parabolico in cui compaiono argomenti con ritardo (discreto e continuo) nelle derivate spaziali di ordine massimo.
In questo lavoro si considera un’equazione alle derivate parziali del primo ordine con una condizione sulla frontiera di tipo integrale. Si studia resistenza, l'unicità e il comportamento asintotico delle soluzioni.
Page 1