Quasivarieties of symmetric distributive lattices.
In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.
We modify slightly the definition of -partial functions given by Celani and Montangie (2012); these partial functions are the morphisms in the category of -space and this category is the dual category of the category with objects the Hilbert algebras with supremum and morphisms, the algebraic homomorphisms. As an application we show that finite pure Hilbert algebras with supremum are determined by the monoid of their endomorphisms.
Page 1