For a graph , a double Roman dominating function is a function having the property that if , then the vertex must have at least two neighbors assigned under or one neighbor with , and if , then the vertex must have at least one neighbor with . The weight of a double Roman dominating function is the sum . The minimum weight of a double Roman dominating function on is called the double Roman domination number of and is denoted by . In this paper, we establish a new upper bound...
A set of vertices in a graph is called a paired-dominating set if it dominates and contains at least one perfect matching. We characterize the set of vertices of a tree that are contained in all minimum paired-dominating sets of the tree.
A dominating set in a graph is a connected dominating set of if it induces a connected subgraph of . The minimum number of vertices in a connected dominating set of is called the connected domination number of , and is denoted by . Let be a spanning subgraph of and let be the complement of relative to ; that is, is a factorization of . The graph is --critical relative to if and for each edge . First, we discuss some classes of graphs whether they are -critical relative...
For a graph G = (V,E), a set S ⊆ V(G) is a total dominating set if it is dominating and both ⟨S⟩ has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V(G) is a total restrained dominating set if it is total dominating and ⟨V(G)-S⟩ has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. We characterize all trees for which total domination and total restrained...
In this paper we initiate the study of total restrained domination in graphs. Let be a graph. A total restrained dominating set is a set where every vertex in is adjacent to a vertex in as well as to another vertex in , and every vertex in is adjacent to another vertex in . The total restrained domination number of , denoted by , is the smallest cardinality of a total restrained dominating set of . First, some exact values and sharp bounds for are given in Section 2. Then the Nordhaus-Gaddum-type...
Let be a simple graph. A subset is a dominating set of , if for any vertex , there exists a vertex such that . The domination number, denoted by , is the minimum cardinality of a dominating set. In this paper we will prove that if is a 5-regular graph, then .
We initiate the study of signed majority total domination in graphs. Let be a simple graph. For any real valued function and , let . A signed majority total dominating function is a function such that for at least a half of the vertices . The signed majority total domination number of a graph is is a signed majority total dominating function on . We research some properties of the signed majority total domination number of a graph and obtain a few lower bounds of .
The signed distance--domination number of a graph is a certain variant of the signed domination number. If is a vertex of a graph , the open -neighborhood of , denoted by , is the set and . is the closed -neighborhood of . A function is a signed distance--dominating function of , if for every vertex , . The signed distance--domination number, denoted by , is the minimum weight of a signed distance--dominating function on . The values of are found for graphs with small diameter,...
Let G = (V,E) be a graph. A total restrained dominating set is a set S ⊆ V where every vertex in V∖S is adjacent to a vertex in S as well as to another vertex in V∖S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by , is the smallest cardinality of a total restrained dominating set of G. We determine lower and upper bounds on the total restrained domination number of the direct product of two graphs. Also, we show that these bounds...
The independent domination number (independent number ) is the minimum (maximum) cardinality among all maximal independent sets of . Haviland (1995) conjectured that any connected regular graph of order and degree satisfies . For , the subset graph is the bipartite graph whose vertices are the - and -subsets of an element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for and prove that...
Download Results (CSV)