The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Maximal non valuation domains in an integral domain

Rahul KumarAtul Gaur — 2020

Czechoslovak Mathematical Journal

Let R be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring R of an integral domain S is called a maximal non valuation domain in S if R is not a valuation subring of S , and for any ring T such that R T S , T is a valuation subring of S . For a local domain S , the equivalence of an integrally closed maximal non VD in S and a maximal non local subring of S is established. The relation between dim ( R , S ) and the number...

Maximal non λ -subrings

Rahul KumarAtul Gaur — 2020

Czechoslovak Mathematical Journal

Let R be a commutative ring with unity. The notion of maximal non λ -subrings is introduced and studied. A ring R is called a maximal non λ -subring of a ring T if R T is not a λ -extension, and for any ring S such that R S T , S T is a λ -extension. We show that a maximal non λ -subring R of a field has at most two maximal ideals, and exactly two if R is integrally closed in the given field. A determination of when the classical D + M construction is a maximal non λ -domain is given. A necessary condition is given...

Page 1

Download Results (CSV)