Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On normal numbers mod 2

Youngho AhnGeon Choe — 1998

Colloquium Mathematicae

It is proved that a real-valued function f ( x ) = exp ( π i χ I ( x ) ) , where I is an interval contained in [0,1), is not of the form f ( x ) = q ( 2 x ) ¯ q ( x ) with |q(x)|=1 a.e. if I has dyadic endpoints. A relation of this result to the uniform distribution mod 2 is also shown.

Average convergence rate of the first return time

Geon ChoeDong Kim — 2000

Colloquium Mathematicae

The convergence rate of the expectation of the logarithm of the first return time R n , after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have l o g [ R n ( x ) P n ( x ) ] = o ( n β ) a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have - ( 1 + ε ) l o g n l o g [ R n ( x ) P n ( x ) ] l o g l o g n eventually, a.s., where P n ( x ) is the probability of the initial n-block in x. In this paper we prove that E [ l o g R ( L , S ) - ( L - 1 ) h ] converges to a constant depending only on the process where R ( L , S ) is the modified first return time with...

Mod 2 normal numbers and skew products

Geon Ho ChoeToshihiro HamachiHitoshi Nakada — 2004

Studia Mathematica

Let E be an interval in the unit interval [0,1). For each x ∈ [0,1) define dₙ(x) ∈ 0,1 by d ( x ) : = i = 1 n 1 E ( 2 i - 1 x ) ( m o d 2 ) , where t is the fractional part of t. Then x is called a normal number mod 2 with respect to E if N - 1 n = 1 N d ( x ) converges to 1/2. It is shown that for any interval E ≠(1/6, 5/6) a.e. x is a normal number mod 2 with respect to E. For E = (1/6, 5/6) it is proved that N - 1 n = 1 N d ( x ) converges a.e. and the limit equals 1/3 or 2/3 depending on x.

Page 1

Download Results (CSV)