The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

On classical invariant theory and binary cubics

Gerald W. Schwarz — 1987

Annales de l'institut Fourier

Let G be a reductive complex algebraic group, and let C [ m V ] G denote the algebra of invariant polynomial functions on the direct sum of m copies of the representations space V of G . There is a smallest integer n = n ( V ) such that generators and relations of C [ m V ] G can be obtained from those of C [ n V ] G by polarization and restitution for all m > n . We bound and the degrees of generators and relations of C [ n V ] G , extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.

Linear maps preserving orbits

Gerald W. Schwarz — 2012

Annales de l’institut Fourier

Let H GL ( V ) be a connected complex reductive group where V is a finite-dimensional complex vector space. Let v V and let G = { g GL ( V ) g H v = H v } . Following Raïs we say that the orbit H v is if the identity component of G is H . If H is semisimple, we say that H v is for H if the identity component of G is an extension of H by a torus. We classify the H -orbits which are not (semi)-characteristic in many cases.

Page 1

Download Results (CSV)