Volume and area renormalizations for conformally compact Einstein metrics
Let be the interior of a compact manifold of dimension with boundary , and be a conformally compact metric on , namely extends continuously (or with some degree of smoothness) as a metric to , where denotes a defining function for , i.e. on and , on . The restrction of to rescales upon changing , so defines invariantly a conformal class of metrics on , which is called the conformal infinity of . In the present paper, the author considers conformally compact metrics...